NSF Workshop: Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous On-Device Intelligence. To be Held in November 2020.

NSF 研讨会:机器学习硬件突破绿色人工智能和无处不在的设备智能。

基本信息

  • 批准号:
    2054865
  • 负责人:
  • 金额:
    $ 1.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

This workshop aims to bring together experts from academia, industry, and government agencies to discuss and identify visionary research opportunities and challenges for machine learning hardware breakthroughs towards green AI and ubiquitous machine learning powered intelligence. In addition, the workshop will provide opportunities to form collaborative research from different disciplines. This three-day workshop will be held virtually in November 2020. It will feature keynote speeches, panel presentations and discussions, as well as break-out and summary sessions, with the objective of bringing different research communities together, defining important research challenges and promoting machine learning hardware breakthroughs. Intellectual Merit: There has been a critical growing need for innovative machine learning hardware which has the potential to bring orders-of-magnitude hardware efficiency. However, the development of machine learning hardware is much slower than that of machine learning algorithms. This is because developing customized machine learning accelerators presents significant challenges due to (1) the need for cross-disciplinary knowledge in machine learning, micro-architecture, and physical chip design and (2) the large design space resulting from the numerous design choices of dataflows, processing elements, and memory hierarchy. This workshop aims to bring together researchers with a diversified set of expertise to discuss and identify research opportunities and challenges for machine learning hardware (both electrical and optical implementation) to assist in a road map for achieving breakthroughs in artificial intelligence (AI) and ubiquitous machine learning powered intelligence. Broader Impacts: This workshop will bring in researchers with complementary backgrounds to offer different perspectives on potential research challenges and directions for enabling machine learning hardware breakthroughs. Novel ideas could be generated to solve the future challenges for electrical and optical implementation of machine learning hardware. Innovation and commercialization opportunities may be identified following the research ideas. Researchers will have an unparalleled opportunity to build collaborative scholarly and institutional partnerships that transcend boundaries imposed by their respective technical areas. Finally, participation of researchers from underrepresented groups as well as early-career researchers will be encouraged. Results from the workshop will be disseminated through workshop reports.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本次研讨会旨在汇聚来自学术界、工业界和政府机构的专家,讨论并确定机器学习硬件突破向绿色AI和无所不在的机器学习推动的智能的富有远见的研究机会和挑战。此外,研讨会将提供机会,形成来自不同学科的合作研究。这一为期三天的研讨会将于2020年11月举行。它将以主旨演讲、小组陈述和讨论以及分组和总结会议为特色,目的是将不同的研究界聚集在一起,确定重要的研究挑战,并促进机器学习硬件的突破。智力优势:对创新的机器学习硬件的需求日益增长,这种硬件有可能带来数量级的硬件效率。然而,机器学习硬件的发展远远慢于机器学习算法的发展。这是因为开发定制的机器学习加速器面临着巨大的挑战,这是因为(1)需要机器学习、微体系结构和物理芯片设计方面的跨学科知识,以及(2)数据流、处理元件和存储器层次结构的大量设计选择导致了巨大的设计空间。本次研讨会旨在将拥有不同专业知识的研究人员聚集在一起,讨论并确定机器学习硬件(电气和光学实施)的研究机会和挑战,以协助制定在人工智能(AI)和无所不在的机器学习支持的智能方面实现突破的路线图。更广泛的影响:本次研讨会将引入具有互补背景的研究人员,就实现机器学习硬件突破的潜在研究挑战和方向提供不同的观点。可以产生新的想法来解决机器学习硬件的电气和光学实现的未来挑战。根据研究思路,可以确定创新和商业化机会。研究人员将有一个无与伦比的机会,建立合作的学术和机构伙伴关系,超越各自技术领域的界限。最后,将鼓励来自代表性不足群体的研究人员以及职业生涯早期研究人员的参与。研讨会的结果将通过研讨会报告传播。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingyan Lin其他文献

NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations
NeRFool:揭示可推广神经辐射场对抗对抗性扰动的脆弱性
Instant-NeRF: Instant On-Device Neural Radiance Field Training via Algorithm-Accelerator Co-Designed Near-Memory Processing
Instant-NeRF:通过算法加速器共同设计的近内存处理进行即时设备上神经辐射现场训练
  • DOI:
    10.1109/dac56929.2023.10247710
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Zhao;Shang Wu;Jingqun Zhang;Sixu Li;Chaojian Li;Yingyan Lin
  • 通讯作者:
    Yingyan Lin
Performance Multiple Objective Optimization of Irreversible Direct Carbon Fuel Cell/Stirling Thermo-Mechanical Coupling System
不可逆直接碳燃料电池/斯特林热机耦合系统性能多目标优化
Performance Analysis of Direct Carbon Fuel Cell-Braysson Heat Engine Coupling System
直接碳燃料电池-布雷松热机耦合系统性能分析
NetBooster: Empowering Tiny Deep Learning By Standing on the Shoulders of Deep Giants
NetBooster:站在深度巨人的肩膀上,为微小的深度学习赋能
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongzhi Yu;Y. Fu;Jiayi Yuan;Haoran You;Yingyan Lin
  • 通讯作者:
    Yingyan Lin

Yingyan Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingyan Lin', 18)}}的其他基金

RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    2400511
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
  • 批准号:
    2345577
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
  • 批准号:
    2312758
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    2346091
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
SHF: Medium:DILSE: Codesigning Decentralized Incremental Learning System via Streaming Data Summarization on Edge
SHF:Medium:DILSE:通过边缘流数据汇总共同设计去中心化增量学习系统
  • 批准号:
    2211815
  • 财政年份:
    2022
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Continuing Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
  • 批准号:
    2048183
  • 财政年份:
    2021
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Continuing Grant
CCRI: Medium: Collaborative Research: 3DML: A Platform for Data, Design and Deployed Validation of Machine Learning for Wireless Networks and Mobile Applications
CCRI:媒介:协作研究:3DML:无线网络和移动应用机器学习的数据、设计和部署验证平台
  • 批准号:
    2016727
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937592
  • 财政年份:
    2019
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    1934767
  • 财政年份:
    2019
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: EPSCoR Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles
会议:EPSCoR 高能宇宙粒子机器学习分析研讨会
  • 批准号:
    2336900
  • 财政年份:
    2024
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Bayesian Machine Learning as a tool for Climate Scientists: An In-Person Workshop at the University of Cambridge
贝叶斯机器学习作为气候科学家的工具:剑桥大学的面对面研讨会
  • 批准号:
    NE/Y003675/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Training Grant
Travel: Workshop on Shared Infrastructure for Machine Learning Electronic Design Automation
旅行:机器学习电子设计自动化共享基础设施研讨会
  • 批准号:
    2310319
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Travel: Workshop for Women in Machine Learning
旅行:机器学习女性研讨会
  • 批准号:
    2327599
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop on Exuberance of Machine Learning in Transport Phenomena
合作研究:机器学习在交通现象中的丰富性研讨会
  • 批准号:
    1940200
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Workshop: Forging Connections between Machine Learning, Data Science, and Power Systems Research. To be held at the National Science Foundation, March 5-6, 2020 in Alexandria, VA.
研讨会:建立机器学习、数据科学和电力系统研究之间的联系。
  • 批准号:
    2018828
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop on Exuberance of Machine Learning in Transport Phenomena
合作研究:机器学习在交通现象中的丰富性研讨会
  • 批准号:
    1940134
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Workshop on Mathematical Machine Learning and Application
数学机器学习与应用研讨会
  • 批准号:
    2020623
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop on Exuberance of Machine Learning in Transport Phenomena
合作研究:机器学习在交通现象中的丰富性研讨会
  • 批准号:
    1940185
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Workshop: Applications of Machine Learning to Experimental Mechanics and Materials; Arlington, Virginia; 24-25 September 2019
研讨会:机器学习在实验力学和材料中的应用;
  • 批准号:
    1940102
  • 财政年份:
    2019
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了