Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
基本信息
- 批准号:2312885
- 负责人:
- 金额:$ 26.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of artificial intelligence (AI) has recently made significant strides, with notable advancements such as large language models like ChatGPT taking the world by storm. However, these breakthroughs would not have been possible without the availability of powerful computing hardware, such as graphics processing units (GPUs). Such hardware has benefited from several decades of technology scaling following Moore's law. As technology approaches its physical limits and AI models require exponentially increasing hardware resources, including computation and storage, alternative computing paradigms with superior energy efficiency and performance are necessary for a sustainable future. Compute-in-memory is one promising approach where computations are directly performed in memory units, eliminating most data movements, a key bottleneck in conventional computers. However, to best exploit the compute-in-memory for acceleration of AI models on the scale of giga-byte to tera-byte levels, it is critical to have high capacity, energy-efficient, and high performance memory technology to fit the models. NAND memory is a form of erasable programmable read-only memory that takes its name from the not-and (NAND) logic gate. The proposed research aims to develop ferroelectric vertical NAND memory to meet these demands and at the same time train students for developing a future workforce for the semiconductor industry.Vertical NAND memory offers the highest density by increasing the number of stacked layers vertically. However, conventional vertical NAND memory based on floating gate or charge trap flash suffers from poor performance, including high write voltage, low speed, and poor endurance, despite their large capacity. To address these issues, this research proposes the development of a vertical NAND flash alternative: the vertical NAND ferroelectric field-effect transistor (FeFET), which achieves high density and high performance simultaneously. By leveraging the recently discovered ferroelectric HfO2, superior performance can be achieved as ferroelectric programming is driven by an applied electric field, which can be energy-efficient and fast. The project aims to design and evaluate vertical NAND FeFET-based compute-in-memory accelerators from devices to architectures, with innovations such as novel cell designs to achieve multi-level cell and variation suppression, vertical NAND array disturb mitigation with a novel array structure, and mapping and benchmarking of various important information processing tasks to the vertical NAND FeFET array. Additionally, this research includes workforce training activities such as lectures and hands-on experience offered to K-12 students and teachers to promote excitement and attract them to the talent pipeline for the semiconductor industry. The proposed research will recruit graduate and undergraduate students via the Research Experience for Undergraduates (REU) program from underrepresented groups, and the knowledge acquired in this project will be distributed through curriculum development and online sharing repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)领域最近取得了重大进展,诸如ChatGPT等大型语言模型的显着进步席卷了世界。然而,如果没有强大的计算硬件,如图形处理单元(GPU),这些突破是不可能的。此类硬件受益于遵循摩尔定律的数十年技术扩展。随着技术接近其物理极限,人工智能模型需要呈指数级增长的硬件资源,包括计算和存储,具有上级能效和性能的替代计算模式对于可持续的未来是必要的。内存计算是一种很有前途的方法,其中计算直接在内存单元中执行,消除了大多数数据移动,这是传统计算机的关键瓶颈。然而,为了最好地利用内存计算来加速千兆字节到兆字节级别的AI模型,拥有高容量,高能效和高性能的内存技术来适应模型至关重要。NAND存储器是可擦除可编程只读存储器的一种形式,其名称来自非与(NAND)逻辑门。该研究旨在开发铁电垂直NAND存储器,以满足这些需求,同时培养学生为半导体行业培养未来的劳动力。垂直NAND存储器通过增加垂直堆叠层的数量提供最高的密度。然而,基于浮栅或电荷捕获闪存的传统垂直NAND存储器尽管容量大,但性能差,包括高写入电压、低速度和差的耐久性。为了解决这些问题,本研究提出了一种垂直NAND闪存替代方案的开发:垂直NAND铁电场效应晶体管(FeFET),它同时实现了高密度和高性能。通过利用最近发现的铁电HfO 2,可以实现上级性能,因为铁电编程是由所施加的电场驱动的,这可以是能量高效且快速的。该项目旨在设计和评估从器件到架构的基于垂直NAND FeFET的内存计算加速器,其创新包括实现多级单元和变化抑制的新型单元设计,采用新型阵列结构减轻垂直NAND阵列干扰,以及将各种重要信息处理任务映射和基准测试到垂直NAND FeFET阵列。此外,这项研究还包括劳动力培训活动,如为K-12学生和教师提供的讲座和实践经验,以促进兴奋并吸引他们进入半导体行业的人才管道。该研究计划将通过本科生研究经验(REU)计划从代表性不足的群体中招募研究生和本科生,并将在该项目中获得的知识通过课程开发和在线共享库进行分发。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shimeng Yu其他文献
Optimization of RRAM-Based Physical Unclonable Function With a Novel Differential Read-Out Method
采用新颖的差分读出方法优化基于 RRAM 的物理不可克隆功能
- DOI:
10.1109/led.2016.2647230 - 发表时间:
2017-02 - 期刊:
- 影响因子:4.9
- 作者:
Yachuan Pang;Huaqiang Wu;Bin Gao;Ning Deng;Dong Wu;Rui Liu;Shimeng Yu;An Chen;He Qian - 通讯作者:
He Qian
First Experimental Demonstration of Robust HZO/β-Ga₂O₃ Ferroelectric Field-Effect Transistors as Synaptic Devices for Artificial Intelligence Applications in a High-Temperature Environment
鲁棒 HZO/β-Ga2O3 铁电场效应晶体管作为高温环境下人工智能应用突触器件的首次实验演示
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.1
- 作者:
J. Noh;H. Bae;Junkang Li;Yandong Luo;Y. Qu;T. J. Park;M. Si;Xuegang Chen;A. Charnas;W. Chung;Xiaochen Peng;S. Ramanathan;Shimeng Yu;P. Ye - 通讯作者:
P. Ye
Resistive Random Access Memory (RRAM)
- DOI:
10.1007/978-3-031-02030-8 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shimeng Yu - 通讯作者:
Shimeng Yu
Ferroelectric FET based Non-Volatile Analog Synaptic Weight Cell
基于铁电 FET 的非易失性模拟突触重量单元
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Jerry;S. Dutta;K. Ni;Jianchi Zhang;Pankaj Sharma;S. Datta;A. Kazemi;X. Hu;M. Niemier;Pai;Shimeng Yu - 通讯作者:
Shimeng Yu
A phenomenological model of oxygen ion transport for metal oxide resistive switching memory
金属氧化物阻变存储器氧离子传输的唯象模型
- DOI:
10.1109/imw.2010.5488321 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Shimeng Yu;H. Wong - 通讯作者:
H. Wong
Shimeng Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shimeng Yu', 18)}}的其他基金
Low Temperature Embedded Memory Devices for Near-Memory and In-Memory Computing
用于近内存和内存计算的低温嵌入式存储器件
- 批准号:
2218604 - 财政年份:2022
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
CAREER: Scaling-up Resistive Synaptic Arrays for Neuro-inspired Computing
职业:扩大电阻突触阵列以实现神经启发计算
- 批准号:
1903951 - 财政年份:2018
- 资助金额:
$ 26.6万 - 项目类别:
Continuing Grant
Exploiting Metal-Insulator-Transition in Strongly Correlated Oxides as Neuron Device for Neuro-Inspired Computing
利用强相关氧化物中的金属-绝缘体转变作为神经元设备进行神经启发计算
- 批准号:
1903577 - 财政年份:2018
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
STARSS: Small: Design of Light-weight RRAM based Hardware Security Primitives for IoT devices
STARSS:小型:为物联网设备设计基于 RRAM 的轻量级硬件安全原语
- 批准号:
1903631 - 财政年份:2018
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Exploiting Metal-Insulator-Transition in Strongly Correlated Oxides as Neuron Device for Neuro-Inspired Computing
利用强相关氧化物中的金属-绝缘体转变作为神经元设备进行神经启发计算
- 批准号:
1701565 - 财政年份:2017
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
CAREER: Scaling-up Resistive Synaptic Arrays for Neuro-inspired Computing
职业:扩大电阻突触阵列以实现神经启发计算
- 批准号:
1552687 - 财政年份:2016
- 资助金额:
$ 26.6万 - 项目类别:
Continuing Grant
STARSS: Small: Design of Light-weight RRAM based Hardware Security Primitives for IoT devices
STARSS:小型:为物联网设备设计基于 RRAM 的轻量级硬件安全原语
- 批准号:
1615774 - 财政年份:2016
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
EAGER: Monolithic 3D Integration of Resistive Random Access Memory (ReRAM): A Technological Exploration
EAGER:电阻式随机存取存储器 (ReRAM) 的单片 3D 集成:技术探索
- 批准号:
1449653 - 财政年份:2014
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
- 批准号:
2312755 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant