Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
基本信息
- 批准号:2328804
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The amount of data required to be analyzed by computing systems has been increasing drastically to exascale (i.e., billions of gigabytes) and beyond. Meanwhile, owing to the boom in artificial intelligence (AI), especially Deep Neural Network (DNN), there is a need for high performance, efficient, fast, and adaptive AI-based big data processing systems. However, those requirements are not sufficiently met by existing computing solutions due to the power-wall in silicon-based semiconductor devices, memory-wall in traditional Von-Neuman computing architecture, and ultra computation- and memory-intensive DNN-based AI algorithms. This project brings together an interdisciplinary group of researchers, with expertise spanning from material science, device fabrication, integrated circuit design, computer architecture, and AI algorithms to undertake innovative device-circuit-algorithm co-design for developing an AI Processing-In-Memory (AI-PIM) system that could leverage the emerging non-volatile magnetic memory technology to implement efficient AI data processing, as well as situation-aware on-chip continual learning. This project targets to significantly improve the AI data processing energy efficiency, with 100X higher efficiency than that of state-of-the-art Graph Processing Units (GPUs). The project will greatly benefit various application areas, such as autonomous driving, robotics, personalized cognitive speech, and smart connected health, etc. This project will also involve education and workforce development activities, including K-12 STEM outreach, undergraduate/graduate training, curriculum development in semiconductor, semiconductor industry internship mentoring, cleanroom fab internships, advance integrated circuit design courses. It will also encourage broader participation of female and under-represented minorities in the microelectronics and semiconductor chip industry. This project will advance knowledge and conduct cross-layer research spanning from emerging Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) material, device, circuit, architecture, to AI algorithm exploration with three main interweaved thrusts. Thrust 1 will explore unconventional spins in SOT materials, e.g., MnPd3, and novel device geometry to fabricate a new design of 2-terminal SOT-MRAM, which simultaneously delivers unlimited endurance, nano-seconds programming time, very high cell density, deterministic programming without external magnetic field, zero leakage, and non-volatility. Leveraging the developed 2-terminal SOT-MRAM, Thrust 2 will design and tape-out an AI Processing-in-Memory (PIM) chip to implement fully digital ‘in-memory sparse multiplication-and-accumulation (MAC)’ operations that support both forward and backward computations of neural networks. Following a co-design methodology, Thrust 3 will first investigate automated network architecture search methods to construct AI model best suitable for given situation while considering our AI-PIM system constraint. This thrust will further develop novel PIM-friendly, compute- and memory-efficient, situation-aware continual learning algorithms that could minimize the power-hungry on-chip weight update (i.e., memory write) complexity, while learning new situation- and user-specific data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算系统需要分析的数据量已急剧增加到百亿亿级(即数十亿千兆字节)甚至更高。同时,由于人工智能(AI)特别是深度神经网络(DNN)的蓬勃发展,需要高性能、高效、快速、自适应的基于人工智能的大数据处理系统。然而,由于硅基半导体器件中的功率墙、传统冯诺依曼计算架构中的内存墙以及基于超计算和内存密集型 DNN 的 AI 算法,现有的计算解决方案并不能充分满足这些要求。该项目汇集了跨学科的研究人员小组,他们拥有材料科学、器件制造、集成电路设计、计算机架构和人工智能算法的专业知识,进行创新的器件-电路-算法协同设计,以开发人工智能内存处理(AI-PIM)系统,该系统可以利用新兴的非易失性磁存储技术来实现高效的人工智能数据处理和态势感知 片上持续学习。该项目的目标是显着提高人工智能数据处理能源效率,其效率比最先进的图形处理单元(GPU)高100倍。该项目将极大地惠及各个应用领域,如自动驾驶、机器人、个性化认知语音和智能互联健康等。该项目还将涉及教育和劳动力发展活动,包括K-12 STEM推广、本科生/研究生培训、半导体课程开发、半导体行业实习指导、洁净室晶圆厂实习、高级集成电路设计课程。它还将鼓励女性和代表性不足的少数群体更广泛地参与微电子和半导体芯片行业。该项目将推进知识发展并进行跨层研究,涵盖新兴的自旋轨道扭矩磁随机存取存储器(SOT-MRAM)材料、器件、电路、架构,以及三个主要相互交织的人工智能算法探索。 Thrust 1 将探索 SOT 材料(例如 MnPd3)中的非常规自旋和新颖的器件几何形状,以制造新设计的 2 端子 SOT-MRAM,该设计同时提供无限的耐用性、纳秒级编程时间、非常高的单元密度、无需外部磁场的确定性编程、零泄漏和非易失性。 Thrust 2将利用已开发的2端子SOT-MRAM,设计并流片一款人工智能内存处理(PIM)芯片,以实现全数字化的“内存中稀疏乘法累加(MAC)”运算,支持神经网络的前向和后向计算。按照协同设计方法,Thrust 3 将首先研究自动化网络架构搜索方法,以构建最适合给定情况的 AI 模型,同时考虑我们的 AI-PIM 系统约束。这一推动力将进一步开发新颖的 PIM 友好、计算和内存高效、情境感知的持续学习算法,可以最大限度地减少耗电的片上权重更新(即内存写入)复杂性,同时学习新的情境和用户特定数据。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shan Wang其他文献
Well‐posedness of quantum stochastic differential equations driven by fermion Brownian motion in noncommutative
Lp‐space
非交换 Lp 空间中费米子布朗运动驱动的量子随机微分方程的适定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
Guangdong Jing;Penghui Wang;Shan Wang - 通讯作者:
Shan Wang
Identification of novel PI3Kδ selective inhibitors by a SVM based multistage virtual screening and molecular dynamics simulations
通过基于 SVM 的多级虚拟筛选和分子动力学模拟鉴定新型 PI3Kδ 选择性抑制剂
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.6
- 作者:
Jing-wei Lian;Shan Wang;Ming-yang Wang;Shi-long Li;Wan-qiu Li;Fan-hao Meng - 通讯作者:
Fan-hao Meng
of endostatin in endothelium via regulating distinct endocytic pathways Cholesterol sequestration by nystatin enhances the uptake and activity
通过调节不同的内吞途径,内皮细胞中的内皮抑素通过制霉菌素封存胆固醇增强摄取和活性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yang Chen;Shan Wang;Xin;Haoran Zhang;Yan Fu;Yongzhang Luo - 通讯作者:
Yongzhang Luo
Online listening responses and e-learning performance
在线听力反应和电子学习表现
- DOI:
10.1108/itp-09-2021-0687 - 发表时间:
2022-06 - 期刊:
- 影响因子:4.4
- 作者:
Zhao Du;Fang Wang;Shan Wang;Xiao Xiao - 通讯作者:
Xiao Xiao
From new form to new entry: introduction to the special theme on loanwords and non-standard orthography
从新形式到新入口:外来词与非标准正字法专题介绍
- DOI:
10.1007/s40607-020-00072-z - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shan Wang;Chu - 通讯作者:
Chu
Shan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shan Wang', 18)}}的其他基金
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
ACED Fab: Ultrafast, low-power AI chip with a new class of MRAM for learning and inference at edge
ACED Fab:超快、低功耗 AI 芯片,配备新型 MRAM,用于边缘学习和推理
- 批准号:
2314591 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Kinetic Characterization of Three-Dimensional (3D) Magnetic Reconnection: A Transformative Step
三维 (3D) 磁重联的动力学表征:一个变革性的步骤
- 批准号:
1619584 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Rapid Magnetic DNA and Protein Chip for Point of Care Molecular Diagnostics
用于护理点分子诊断的快速磁性 DNA 和蛋白质芯片
- 批准号:
0801385 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Novel Granular High Permeability Materials and Integrated Inductors for Power Delivery and Wireless Communication
用于电力传输和无线通信的新型颗粒高磁导率材料和集成电感器
- 批准号:
0423908 - 财政年份:2004
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Investigation of New Soft Magnetic Films for GHz Magnetic Recording Heads and Integrated Inductors
GHz 磁记录头和集成电感器用新型软磁薄膜的研究
- 批准号:
0096704 - 财政年份:2001
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Deposition and Characterization of Novel Spin Dependent Tunneling Junctions
新型自旋相关隧道结的沉积和表征
- 批准号:
9700168 - 财政年份:1997
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Investigation of Laminated High Saturation Magnetic Films on Sloping Surfaces & High Data Rate Magnetic Recording
倾斜表面上层压高饱和磁性薄膜的研究
- 批准号:
9710223 - 财政年份:1997
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RIA: New high moment soft magnetic multilayers & their applications in sub-half micron track width magnetic recording
RIA:新型高磁矩软磁多层膜
- 批准号:
9409805 - 财政年份:1994
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328906 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328908 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
- 批准号:
2329063 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant














{{item.name}}会员




