Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)

超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)

基本信息

  • 批准号:
    EP/X035360/1
  • 负责人:
  • 金额:
    $ 678.7万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

There is an urgent need for new power electronic technologies to underpin the transition to net zero. The imminent risks for our planet have been highlighted by UN's Intergovernmental Panel on Climate Change calling our current status 'code red' for human driven global heating in its scientific report published in 2021. Deploying power electronics in renewable generation systems enables smart control of grid networks and efficient energy utilization. This is also true of transportation, which in turn will support a dramatic reduction of the 72% of global primary energy consumption currently wasted world-wide.In this programme grant (PG), we develop a transformative next generation of Aluminium Gallium Nitride (AlGaN) Solid-State Circuit Breakers (SSCBs), with greatly improved efficiency and greater voltage range, to many kVs, enabling anticipated global energy savings >20% compared to continuing with current technologies. Circuit breakers are critical components for safe, reliable electrical power systems, including for power-electronics-dense grids, but a step-change in performance is needed. According to the major power electronics company ABB / Hitachi Energy, SSCBs are 'the weakest link in next-generation electricity infrastructure'. The slow response time of existing mechanical circuit breakers available on the market risks damaging sensitive equipment. The alternative use of Silicon (Si) - based SSCBs, although providing superior switching speed (<1 microseconds) versus mechanical circuit breakers (>100 microseconds), and offering the fast circuit protection critically needed for high-performance power distribution, presently suffer from high conduction losses and are often limited at best to 4-5 kV safe operation for a single chip. Higher voltage ranges are required in increasingly more complex and varied application areas including electric planes and ships. For example, Si-based SSCB inefficiencies would contribute up to an additional 600 Mtons of CO2 emissions per year if implemented in the global cruise liner industry alone.The vision and ambition is to address current roadblocks in power electronics by developing new SSCBs. The limitations in existing technologies can be largely eliminated using ultrawide bandgap AlGaN SSCBs, which conservatively have a 100x improvement in efficiency compared to existing commercial high-voltage devices such as Si insulated-gate bipolar transistors and Silicon Carbide (SiC) metal oxide semiconductor field effect transistors, to enable efficient, compact SSCBs with minimal cooling requirements. In 20 years, it is expected that these highly efficient ultrawide bandgap AlGaN power electronic components will have displaced all other technologies such as Si and SiC for high-current high-voltage uses, e.g. in power distribution and transportation such as in trains, maritime and planes, helping enable a carbon neutral society. The underlying physical reason for the great benefit of using AlGaN is its much greater bandgap (up to 6.2 eV) compared to Si (1.1 eV) and SiC (3.2 eV). The commonly used power electronics Baliga Figure of Merit, i.e. the suitability of a material for power electronics, of AlGaN is nearly 1,800 compared to 1 for Si and 340 for SiC, enabling a revolution in what power electronics will be able to deliver.Many interlinked technological challenges need to be addressed, including AlGaN materials growth, and methods to enable large enough layer thicknesses, alongside the development and fabrication of new device concepts to achieve high performance and reliable AlGaN SSCBs. The PG will be driven by the realization of transformative device prototypes, with ever increasing complexity, challenge and innovation during the course of the PG, ultimately driving UK research in this area towards end-application prototypes. The high-power application space is huge, and developments will be steered by involving end-users in a co-creation role for the SSCB prototypes.
迫切需要新的电力电子技术来支持向净零的过渡。联合国政府间气候变化专门委员会在 2021 年发布的科学报告中强调了我们的星球面临的迫在眉睫的风险,称人类导致的全球变暖目前处于“红色代码”。在可再生发电系统中部署电力电子设备可以实现电网的智能控制和高效的能源利用。交通运输也是如此,这反过来将支持大幅减少目前全球浪费的 72% 的一次能源消耗。在这项计划拨款 (PG) 中,我们开发了革命性的下一代氮化铝镓 (AlGaN) 固态断路器 (SSCB),其效率大大提高,电压范围更大,达到许多 kV,与继续使用当前的方案相比,预计全球节能可节省 20% 以上 技术。断路器是安全、可靠的电力系统(包括电力电子密集电网)的关键组件,但需要在性能上做出重大改变。据大型电力电子公司 ABB/日立能源称,SSCB 是“下一代电力基础设施中最薄弱的环节”。市场上现有的机械断路器响应时间慢,有损坏敏感设备的风险。硅 (Si) 基 SSCB 的替代使用虽然比机械断路器 (>100 微秒) 提供卓越的开关速度 (<1 微秒),并提供高性能配电所急需的快速电路保护,但目前面临高传导损耗,并且通常最多限制为单芯片 4-5 kV 的安全操作。越来越复杂和多样化的应用领域(包括电动飞机和船舶)需要更高的电压范围。例如,如果仅在全球邮轮行业实施,硅基 SSCB 的低效率每年将导致额外 600 吨二氧化碳排放。我们的愿景和目标是通过开发新的 SSCB 来解决电力电子领域当前的障碍。使用超宽带隙 AlGaN SSCB 可以在很大程度上消除现有技术的局限性,与硅绝缘栅双极晶体管和碳化硅 (SiC) 金属氧化物半导体场效应晶体管等现有商用高压器件相比,保守地说,其效率提高了 100 倍,从而以最低的冷却要求实现高效、紧凑的 SSCB。 20 年内,预计这些高效超宽带隙 AlGaN 电力电子元件将取代 Si 和 SiC 等所有其他技术,用于高电流高电压用途,例如:在火车、海运和飞机等配电和运输领域,帮助实现碳中和社会。使用 AlGaN 带来巨大优势的根本物理原因是,与 Si (1.1 eV) 和 SiC (3.2 eV) 相比,其带隙更大(高达 6.2 eV)。 AlGaN 常用的电力电子器件 Baliga 品质因数(即电力电子材料的适用性)接近 1,800,而 Si 为 1,SiC 为 340,这使得电力电子器件的性能发生了一场革命。需要解决许多相互关联的技术挑战,包括 AlGaN 材料生长、实现足够大的层厚度的方法,以及新器件概念的开发和制造。 实现高性能且可靠的 AlGaN SSCB。 PG 将由变革性设备原型的实现驱动,在 PG 过程中复杂性、挑战和创新不断增加,最终推动英国在这一领域的研究走向最终应用原型。高功率应用空间巨大,将通过让最终用户参与 SSCB 原型的共同创建来引导开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Kuball其他文献

Non-Arrhenius Degradation of AlGaN/GaN HEMTs Grown on Bulk GaN Substrates
在块状 GaN 衬底上生长的 AlGaN/GaN HEMT 的非阿累尼乌斯退化
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    M. Ťapajna;N. Killat;J. Moereke;T. Paskova;K. Evans;J. Leach;X. Li;U. Ozgur;H. Morkoç;K. Chabak;A. Crespo;J. Gillespie;R. Fitch;M. Kossler;D. Walker;M. Trejo;G. Via;J. Blevins;Martin Kuball
  • 通讯作者:
    Martin Kuball
Siと接合したダイヤモンド基板上のFETの作製
在与 Si 结合的金刚石基底上制造 FET
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    神田 進司;山條 翔二;Martin Kuball;重川 直輝;梁 剣波
  • 通讯作者:
    梁 剣波
Control of Buffer-Induced Current Collapse in AlGaN/GaN HEMTs Using SiNx Deposition
使用 SiNx 沉积控制 AlGaN/GaN HEMT 中缓冲器引起的电流崩塌
  • DOI:
    10.1109/ted.2017.2738669
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    W. M. Waller;M. Gajda;S. Pandey;J. Donkers;D. Calton;J. Croon;J. Sonsky;M. Uren;Martin Kuball
  • 通讯作者:
    Martin Kuball
Novel thermal management of GaN electronics - Diamond substrates
GaN 电子器件的新颖热管理 - 金刚石衬底
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Kuball;J. Pomeroy;J. Calvo;Huarui Sun;Roland B. Simon;D. Francis;F. Faili;D. Twitchen;S. Rossi;M. Alomari;E. Kohn;L. Tóth;B. Pécz
  • 通讯作者:
    B. Pécz
Elimination of Degenerate Epitaxy in the Growth of High Quality B 12 As 2 Single Crystalline Epitaxial Films
高质量B 12 As 2 单晶外延薄膜生长过程中简并外延的消除
  • DOI:
    10.1557/opl.2011.316
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu
  • 通讯作者:
    Yimei Zhu

Martin Kuball的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Kuball', 18)}}的其他基金

Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
  • 批准号:
    EP/Z531091/1
  • 财政年份:
    2024
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
  • 批准号:
    EP/X012123/1
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
  • 批准号:
    EP/W034751/1
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
Van der Waals Ga2O3 functional materials epitaxy: Revolutionary power electronics
范德华 Ga2O3 功能材料外延:革命性的电力电子学
  • 批准号:
    EP/X015882/1
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
FINER: Future thermal Imaging with Nanometre Enhanced Resolution
FINER:具有纳米增强分辨率的未来热成像
  • 批准号:
    EP/V057626/1
  • 财政年份:
    2022
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
Materials and Devices for Next Generation Internet (MANGI)
下一代互联网材料和设备(MANGI)
  • 批准号:
    EP/R029393/1
  • 财政年份:
    2018
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
Sub-micron 3-D Electric Field Mapping in GaN Electronic Devices
GaN 电子器件中的亚微米 3D 电场测绘
  • 批准号:
    EP/R022739/1
  • 财政年份:
    2018
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs
集成 GaN-金刚石微波电子器件:从材料、晶体管到 MMIC
  • 批准号:
    EP/P00945X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
Quantitative non-destructive nanoscale characterisation of advanced materials
先进材料的定量无损纳米级表征
  • 批准号:
    EP/P013562/1
  • 财政年份:
    2017
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
High Performance Buffers for RF GaN Electronics
适用于 RF GaN 电子器件的高性能缓冲器
  • 批准号:
    EP/N031563/1
  • 财政年份:
    2016
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant

相似海外基金

ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Standard Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of ultrawide bandgap deep UV photodetectors
超宽带隙深紫外光电探测器的研制
  • 批准号:
    2902113
  • 财政年份:
    2024
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Studentship
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
  • 批准号:
    EP/Z531091/1
  • 财政年份:
    2024
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
CAREER: Ultrawide Bandgap Aluminum Nitride FETs for Power Electronics
职业:用于电力电子器件的超宽带隙氮化铝 FET
  • 批准号:
    2338604
  • 财政年份:
    2024
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Continuing Grant
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
  • 批准号:
    2234479
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Standard Grant
FuSe-TG: Co-design based Wide bandgap Semiconductor Research Center
FuSe-TG:基于协同设计的宽带隙半导体研究中心
  • 批准号:
    2235373
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Standard Grant
Thermoradiative Energy Conversion Devices Based on Narrow Bandgap Antimonide Semiconductors
基于窄带隙锑化物半导体的热辐射能量转换器件
  • 批准号:
    2317609
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Standard Grant
Enabling technology unlocking full potential of high bandgap chalcopyrite
使能技术释放高带隙黄铜矿的全部潜力
  • 批准号:
    DP230102463
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Discovery Projects
High-Bandwidth Sensing for Wide-bandgap Power Conversion
用于宽带隙功率转换的高带宽传感
  • 批准号:
    EP/W021315/1
  • 财政年份:
    2023
  • 资助金额:
    $ 678.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了