Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)
超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)
基本信息
- 批准号:EP/X035360/1
- 负责人:
- 金额:$ 678.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There is an urgent need for new power electronic technologies to underpin the transition to net zero. The imminent risks for our planet have been highlighted by UN's Intergovernmental Panel on Climate Change calling our current status 'code red' for human driven global heating in its scientific report published in 2021. Deploying power electronics in renewable generation systems enables smart control of grid networks and efficient energy utilization. This is also true of transportation, which in turn will support a dramatic reduction of the 72% of global primary energy consumption currently wasted world-wide.In this programme grant (PG), we develop a transformative next generation of Aluminium Gallium Nitride (AlGaN) Solid-State Circuit Breakers (SSCBs), with greatly improved efficiency and greater voltage range, to many kVs, enabling anticipated global energy savings >20% compared to continuing with current technologies. Circuit breakers are critical components for safe, reliable electrical power systems, including for power-electronics-dense grids, but a step-change in performance is needed. According to the major power electronics company ABB / Hitachi Energy, SSCBs are 'the weakest link in next-generation electricity infrastructure'. The slow response time of existing mechanical circuit breakers available on the market risks damaging sensitive equipment. The alternative use of Silicon (Si) - based SSCBs, although providing superior switching speed (<1 microseconds) versus mechanical circuit breakers (>100 microseconds), and offering the fast circuit protection critically needed for high-performance power distribution, presently suffer from high conduction losses and are often limited at best to 4-5 kV safe operation for a single chip. Higher voltage ranges are required in increasingly more complex and varied application areas including electric planes and ships. For example, Si-based SSCB inefficiencies would contribute up to an additional 600 Mtons of CO2 emissions per year if implemented in the global cruise liner industry alone.The vision and ambition is to address current roadblocks in power electronics by developing new SSCBs. The limitations in existing technologies can be largely eliminated using ultrawide bandgap AlGaN SSCBs, which conservatively have a 100x improvement in efficiency compared to existing commercial high-voltage devices such as Si insulated-gate bipolar transistors and Silicon Carbide (SiC) metal oxide semiconductor field effect transistors, to enable efficient, compact SSCBs with minimal cooling requirements. In 20 years, it is expected that these highly efficient ultrawide bandgap AlGaN power electronic components will have displaced all other technologies such as Si and SiC for high-current high-voltage uses, e.g. in power distribution and transportation such as in trains, maritime and planes, helping enable a carbon neutral society. The underlying physical reason for the great benefit of using AlGaN is its much greater bandgap (up to 6.2 eV) compared to Si (1.1 eV) and SiC (3.2 eV). The commonly used power electronics Baliga Figure of Merit, i.e. the suitability of a material for power electronics, of AlGaN is nearly 1,800 compared to 1 for Si and 340 for SiC, enabling a revolution in what power electronics will be able to deliver.Many interlinked technological challenges need to be addressed, including AlGaN materials growth, and methods to enable large enough layer thicknesses, alongside the development and fabrication of new device concepts to achieve high performance and reliable AlGaN SSCBs. The PG will be driven by the realization of transformative device prototypes, with ever increasing complexity, challenge and innovation during the course of the PG, ultimately driving UK research in this area towards end-application prototypes. The high-power application space is huge, and developments will be steered by involving end-users in a co-creation role for the SSCB prototypes.
迫切需要新的电力电子技术来支持向净零过渡。联合国政府间气候变化专门委员会在其2021年发表的科学报告中强调了我们星球面临的迫在眉睫的风险,称我们目前的状况是人为全球变暖的“红色代码”。在可再生能源发电系统中部署电力电子技术可以实现电网的智能控制和高效的能源利用。交通运输也是如此,这反过来将支持大幅减少目前全球浪费的72%的全球一次能源消耗。在这项计划资助(PG)中,我们开发了一种变革性的下一代氮化铝镓(AlGaN)固态断路器(SSCB),其效率大大提高,电压范围更大,可达许多kV,与继续使用现有技术相比,实现了预期的全球节能>20%。断路器是安全、可靠的电力系统的关键部件,包括电力电子密集型电网,但需要在性能上进行阶跃式改变。根据大型电力电子公司ABB /日立能源的说法,SSCB是“下一代电力基础设施中最薄弱的环节”。市场上现有的机械断路器响应时间慢,有损坏敏感设备的风险。硅(Si)基SSCB的替代使用虽然提供了相对于机械断路器(>100微秒)的上级开关速度(<1微秒),并且提供了高性能配电所迫切需要的快速电路保护,但是目前遭受高传导损耗,并且对于单个芯片通常最多限于4-5 kV的安全操作。在包括电动飞机和船舶在内的越来越复杂和多样化的应用领域中,需要更高的电压范围。例如,如果仅在全球邮轮行业实施,硅基SSCB的低效率每年将增加高达6亿吨的二氧化碳排放量。我们的愿景和目标是通过开发新的SSCB来解决电力电子领域目前的障碍。使用超宽带隙AlGaN SSCB可以在很大程度上消除现有技术中的限制,与现有的商业高压器件(例如Si绝缘栅双极晶体管和碳化硅(SiC)金属氧化物半导体场效应晶体管)相比,超宽带隙AlGaN SSCB保守地具有100倍的效率提高,以实现具有最小冷却要求的高效、紧凑的SSCB。预计在20年内,这些高效的超宽带隙AlGaN电力电子元件将取代所有其他技术,如Si和SiC,用于大电流高压用途,例如在火车,海上和飞机等配电和运输中,帮助实现碳中和社会。使用AlGaN的巨大益处的潜在物理原因是其与Si(1.1 eV)和SiC(3.2 eV)相比大得多的带隙(高达6.2 eV)。AlGaN的Baliga品质因数(Baliga Figure of Merit)(即适用于电力电子的材料)接近1,800,而Si为1,SiC为340,这使得电力电子能够实现革命。需要解决许多相互关联的技术挑战,包括AlGaN材料的生长,以及实现足够大的层厚度的方法,同时开发和制造新器件概念,以实现高性能和可靠的AlGaN SSCB。PG将由变革性设备原型的实现驱动,在PG过程中不断增加的复杂性,挑战和创新,最终推动英国在该领域的研究走向终端应用原型。高功率应用空间巨大,将通过让最终用户参与SSCB原型的共同创建来引导开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Kuball其他文献
Non-Arrhenius Degradation of AlGaN/GaN HEMTs Grown on Bulk GaN Substrates
在块状 GaN 衬底上生长的 AlGaN/GaN HEMT 的非阿累尼乌斯退化
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.9
- 作者:
M. Ťapajna;N. Killat;J. Moereke;T. Paskova;K. Evans;J. Leach;X. Li;U. Ozgur;H. Morkoç;K. Chabak;A. Crespo;J. Gillespie;R. Fitch;M. Kossler;D. Walker;M. Trejo;G. Via;J. Blevins;Martin Kuball - 通讯作者:
Martin Kuball
Siと接合したダイヤモンド基板上のFETの作製
在与 Si 结合的金刚石基底上制造 FET
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
神田 進司;山條 翔二;Martin Kuball;重川 直輝;梁 剣波 - 通讯作者:
梁 剣波
Control of Buffer-Induced Current Collapse in AlGaN/GaN HEMTs Using SiNx Deposition
使用 SiNx 沉积控制 AlGaN/GaN HEMT 中缓冲器引起的电流崩塌
- DOI:
10.1109/ted.2017.2738669 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
W. M. Waller;M. Gajda;S. Pandey;J. Donkers;D. Calton;J. Croon;J. Sonsky;M. Uren;Martin Kuball - 通讯作者:
Martin Kuball
Elimination of Degenerate Epitaxy in the Growth of High Quality B 12 As 2 Single Crystalline Epitaxial Films
高质量B 12 As 2 单晶外延薄膜生长过程中简并外延的消除
- DOI:
10.1557/opl.2011.316 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu - 通讯作者:
Yimei Zhu
Growth Mechanisms and Defect Structures of B12As2 Epilayers Grown on 4H-SiC Substrates
4H-SiC 衬底上生长的 B12As2 外延层的生长机制和缺陷结构
- DOI:
10.1016/j.jcrysgro.2011.12.065 - 发表时间:
2011 - 期刊:
- 影响因子:1.8
- 作者:
Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu - 通讯作者:
Yimei Zhu
Martin Kuball的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Kuball', 18)}}的其他基金
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
- 批准号:
EP/Z531091/1 - 财政年份:2024
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
- 批准号:
EP/W034751/1 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
Van der Waals Ga2O3 functional materials epitaxy: Revolutionary power electronics
范德华 Ga2O3 功能材料外延:革命性的电力电子学
- 批准号:
EP/X015882/1 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
FINER: Future thermal Imaging with Nanometre Enhanced Resolution
FINER:具有纳米增强分辨率的未来热成像
- 批准号:
EP/V057626/1 - 财政年份:2022
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
Materials and Devices for Next Generation Internet (MANGI)
下一代互联网材料和设备(MANGI)
- 批准号:
EP/R029393/1 - 财政年份:2018
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
Sub-micron 3-D Electric Field Mapping in GaN Electronic Devices
GaN 电子器件中的亚微米 3D 电场测绘
- 批准号:
EP/R022739/1 - 财政年份:2018
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs
集成 GaN-金刚石微波电子器件:从材料、晶体管到 MMIC
- 批准号:
EP/P00945X/1 - 财政年份:2017
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
Quantitative non-destructive nanoscale characterisation of advanced materials
先进材料的定量无损纳米级表征
- 批准号:
EP/P013562/1 - 财政年份:2017
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
High Performance Buffers for RF GaN Electronics
适用于 RF GaN 电子器件的高性能缓冲器
- 批准号:
EP/N031563/1 - 财政年份:2016
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
相似海外基金
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 678.7万 - 项目类别:
Standard Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
- 批准号:
24K17312 - 财政年份:2024
- 资助金额:
$ 678.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of ultrawide bandgap deep UV photodetectors
超宽带隙深紫外光电探测器的研制
- 批准号:
2902113 - 财政年份:2024
- 资助金额:
$ 678.7万 - 项目类别:
Studentship
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
- 批准号:
EP/Z531091/1 - 财政年份:2024
- 资助金额:
$ 678.7万 - 项目类别:
Research Grant
CAREER: Ultrawide Bandgap Aluminum Nitride FETs for Power Electronics
职业:用于电力电子器件的超宽带隙氮化铝 FET
- 批准号:
2338604 - 财政年份:2024
- 资助金额:
$ 678.7万 - 项目类别:
Continuing Grant
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
- 批准号:
2234479 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Standard Grant
FuSe-TG: Co-design based Wide bandgap Semiconductor Research Center
FuSe-TG:基于协同设计的宽带隙半导体研究中心
- 批准号:
2235373 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Standard Grant
Thermoradiative Energy Conversion Devices Based on Narrow Bandgap Antimonide Semiconductors
基于窄带隙锑化物半导体的热辐射能量转换器件
- 批准号:
2317609 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Standard Grant
Enabling technology unlocking full potential of high bandgap chalcopyrite
使能技术释放高带隙黄铜矿的全部潜力
- 批准号:
DP230102463 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Discovery Projects
SBIR Phase I: A compact, 3-level, high efficiency, 4-port, modular universal power conversion system with Internet of Things (IOT) using Wide Bandgap (WBG) devices
SBIR 第一阶段:采用宽带隙 (WBG) 器件的紧凑型、三电平、高效率、4 端口、模块化通用电源转换系统,具有物联网 (IOT) 功能
- 批准号:
2153880 - 财政年份:2023
- 资助金额:
$ 678.7万 - 项目类别:
Standard Grant