Information-theoretic bounds of digital image forensics

数字图像取证的信息论界限

基本信息

  • 批准号:
    259355083
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Digital images and image processing pervade everyday life. This calls for new techniques to verify the authenticity and integrity of digital image data. Both questions pertain to the young research field of digital image forensics. Known methods can detect image forgeries by statistically analyzing traces of the involved image processing operators. However, most known methods are heuristic and their effectiveness is known for laboratory conditions only. Rigorous proofs telling us why and under what conditions a method produces reliable results are rare. Current developments increasingly follow an approach to combine ever more features and resort to machine learning for managing the resulting complexity. This approach, however, promises few fundamental insights into causal relationships and limitations. The proposed project breaks with this approach. It tries to establish upper bounds for the information that can be exploited for image forensics. Emphasis is put on situations where known methods are unreliable. This approach informs us for the first time on whether further refinements of forensic methods -- heuristic and theoretically founded ones alike -- are promising; or whether no more forensically useful traces exist.
数字图像和图像处理渗透到日常生活中。这就需要新的技术来验证数字图像数据的真实性和完整性。这两个问题都属于年轻的数字图像取证研究领域。已知的方法可以通过统计分析所涉及的图像处理算子的轨迹来检测图像伪造。然而,大多数已知的方法是启发式的,并且它们的有效性仅在实验室条件下已知。严格的证据告诉我们为什么和在什么条件下一种方法产生可靠的结果是罕见的。当前的发展越来越多地遵循一种方法,即联合收割机组合更多的功能,并诉诸机器学习来管理由此产生的复杂性。然而,这种方法几乎没有对因果关系和局限性的基本见解。拟议的项目打破了这种做法。它试图建立可用于图像取证的信息的上限。重点放在已知方法不可靠的情况下。这种方法第一次告诉我们,进一步改进法医方法-启发式的和理论上建立的方法-是否有希望;或者是否没有更多的法医有用的痕迹存在。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Information-theoretic Bounds of Resampling Forensics: New Evidence for Traces Beyond Cyclostationarity
重采样取证的信息论界限:超越循环平稳性痕迹的新证据
Decoy Password Vaults: At Least as Hard as Steganography?
诱骗密码库:至少和隐写术一样难?
  • DOI:
    10.1007/978-3-319-58469-0_24
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Pasquini;P. Schöttle;R. Böhme
  • 通讯作者:
    R. Böhme
Forensics of high-quality JPEG images with color subsampling
Teaching Digital Signal Processing With a Challenge on Image Forensics [SP Education]
  • DOI:
    10.1109/msp.2018.2887214
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Cecilia Pasquini;G. Boato;R. Bohme
  • 通讯作者:
    Cecilia Pasquini;G. Boato;R. Bohme
Towards A Theory of Jpeg Block Convergence
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Rainer Böhme其他文献

Professor Dr. Rainer Böhme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Rainer Böhme', 18)}}的其他基金

Sichere adaptive Steganographie
安全自适应隐写术
  • 批准号:
    152209091
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
  • 批准号:
    2337554
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
  • 批准号:
    23K03180
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information Theoretic Approach to Explore Malware Payload and Command and Control
探索恶意软件有效负载和命令与控制的信息论方法
  • 批准号:
    2887741
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了