High-Resolution Finite Element Schemes for the Compressible MHD Equations

可压缩 MHD 方程的高分辨率有限元方案

基本信息

项目摘要

The goal of this project is the development and analysis of high-resolution finite element schemes for solving the equations of ideal magnetohydrodynamics (MHD) on unstructured meshes in 3D. The main focus is on the design of algorithms satisfying all problem-specific physical constraints (conservation laws, maximum principles, divergence-free conditions) at the discrete level. The proposed approach belongs to the family of staggered constrained transport (CT) methods. A physics-compatible choice of nodal, edge, and face finite element spaces makes it possible to avoid divergence errors that cause numerical instabilities. A nonoscillatory approximation to the compressible MHD system is constructed using a new type of artificial dissipation and an element-based version of the flux-corrected transport (FCT) algorithm. The continuous nodal approximation of the conserved quantities is used to calculate the edge-based electric field intensity and the face-based magnetic flux density from the Ohm and Maxwell-Faraday laws. The formation of spurious undershoots/overshoots is prevented using a custom-made limiting strategy. The proposed MHD solver can be run in an implicit or explicit mode. It does not require dimensional splitting and produces solenoidal magnetic fields without the cost of solving a Poisson equation or a transport equation for the vector-valued magnetic potential. The developed software will be used to study idealized magnetic Z-pinch liner implosions and 3D magnetic Rayleigh-Taylor (MRT) instabilities.
本项目的目标是开发和分析在非结构网格上求解理想磁流体力学(MHD)方程的高分辨率有限元格式。主要的焦点是在离散水平上设计满足所有特定问题的物理约束(守恒定律、最大值原理、无发散条件)的算法。该方法属于交错约束运输(CT)方法家族。物理上兼容的节点、边和面有限元空间的选择使避免导致数值不稳定的发散误差成为可能。利用一种新型的人工耗散和基于单元的通量校正输运(FCT)算法,构造了可压缩MHD系统的无振荡近似。守恒量的连续节点近似被用来从欧姆定律和麦克斯韦-法拉第定律计算基于边的电场强度和基于面的磁通密度。使用定制的限制策略可防止虚假欠冲/过冲的形成。所提出的MHD求解器可以在隐式或显式模式下运行。它不需要维分裂,并且产生螺线管磁场,而不需要解向量值磁势的泊松方程或输运方程。开发的软件将用于研究理想化的磁Z箍缩衬里内爆和三维磁瑞利-泰勒(MRT)不稳定性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A linearity preserving nodal variation limiting algorithm for continuous Galerkin discretization of ideal MHD equations
理想MHD方程连续Galerkin离散化的线性保持节点变差限制算法
  • DOI:
    10.1016/j.jcp.2020.109390
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mabuza;Sibusiso;Shadid;John N;Eric C;Pawlowski;Roger P;Kuzmin;Dmitri
  • 通讯作者:
    Dmitri
An FCT finite element scheme for ideal MHD equations in 1D and 2D
  • DOI:
    10.1016/j.jcp.2017.02.051
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steffen Basting;D. Kuzmin
  • 通讯作者:
    Steffen Basting;D. Kuzmin
Limiting and divergence cleaning for continuous finite element discretizations of the MHD equations
  • DOI:
    10.1016/j.jcp.2020.109230
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Kuzmin;N. Klyushnev
  • 通讯作者:
    D. Kuzmin;N. Klyushnev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Dmitri Kuzmin其他文献

Professor Dr. Dmitri Kuzmin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Dmitri Kuzmin', 18)}}的其他基金

Injection Moulding Simulation and Efficient NumericalMethods for the Determinatin of Fiber Orientations by Direct Calculation or Reconstruction of the Orientation Distribution Function
通过直接计算或重建取向分布函数来确定纤维取向的注射成型模拟和高效数值方法
  • 批准号:
    401649630
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Subgrid Scale Modeling and Efficient Finite Element Simulation of Fiber Suspension Flows
纤维悬浮液流的亚网格尺度建模和高效有限元模拟
  • 批准号:
    251122961
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-Resolution Multimesh hp-FEM for Simulation of Compressible Particle-Laden Gas Flows
用于模拟可压缩颗粒加载气流的高分辨率多网格 hp-FEM
  • 批准号:
    195871519
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Level-Set-Methoden für inkompressible Strömungen mit freien Grenzflächen
具有自由接口的不可压缩流的水平集方法
  • 批准号:
    36412402
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Herleitung und Realisierung von Methoden zur a posteriori Gitteradaptionen für hochauflösende Finite-Diskretisierungen mit Anwendung auf kompressible Gasströmungen
高分辨率有限离散化后验网格自适应方法的推导和实现,并应用于可压缩气体流
  • 批准号:
    29078310
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Herleitung und Realisierung von hochauflösenden FEM-Diskretisierungsverfahren und effizienten iterativen Lösern zur numerischen Simulation von konvektionsdominanten Strömungen
用于对流主导流数值模拟的高分辨率有限元离散方法和高效迭代求解器的推导和实现
  • 批准号:
    5407942
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Discrete networks and finite element approaches to rheological modeling of dense suspensions of particles via direct numerical simulations
通过直接数值模拟对颗粒稠密悬浮液进行流变建模的离散网络和有限元方法
  • 批准号:
    446888252
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stabilization and Limiting Techniques for Galerkin Approximations of Hyperbolic Conservation Laws With High Order Finite Elements
高阶有限元双曲守恒定律伽辽金逼近的稳定和限制技术
  • 批准号:
    387630025
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic subgrid scale modeling and structure-preserving flux limiting for hyperbolic systems
双曲系统的随机亚网格尺度建模和结构保持通量限制
  • 批准号:
    525730336
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Structure-preserving finite element discretization and optimal control of the shallow water equations with bathymetry on unstructured meshes
非结构化网格上测深浅水方程的保结构有限元离散化和最优控制
  • 批准号:
    504259026
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The application of high resolution peripheral quantitative computed tomography and finite element modeling as a novel diagnostic tool for osteoporosis and fracture risk
高分辨率外周定量计算机断层扫描和有限元建模的应用作为骨质疏松症和骨折风险的新型诊断工具
  • 批准号:
    519724-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel longitudinal analysis of high-resolution peripheral quantitative computed tomography and finite element predicted bone strength.
高分辨率外周定量计算机断层扫描和有限元预测骨强度的新颖纵向分析。
  • 批准号:
    543183-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The application of high resolution peripheral quantitative computed tomography and finite element modeling as a novel diagnostic tool for osteoporosis and fracture risk
高分辨率外周定量计算机断层扫描和有限元建模的应用作为骨质疏松症和骨折风险的新型诊断工具
  • 批准号:
    519724-2018
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The application of high resolution peripheral quantitative computed tomography and finite element modeling as a novel diagnostic tool for osteoporosis and fracture risk
高分辨率外周定量计算机断层扫描和有限元建模的应用作为骨质疏松症和骨折风险的新型诊断工具
  • 批准号:
    519724-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mechanical Validation of High-Resolution Imaging Based Finite Element Modeling to Estimate Bone Failure Load at the Distal Radius
基于高分辨率成像的有限元建模的机械验证,用于估计远端半径处的骨破坏载荷
  • 批准号:
    528653-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of high resolution 3D hydrodynamic circulation numerical models using unstructured finite volume element methods with application to temperate and Arctic waters
使用非结构化有限体积元方法开发高分辨率 3D 水动力循环数值模型,并将其应用于温带和北极水域
  • 批准号:
    406561-2010
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Industrial R&D Fellowships (IRDF)
Development of high resolution 3D hydrodynamic circulation numerical models using unstructured finite volume element methods with application to temperate and Arctic waters
使用非结构化有限体积元方法开发高分辨率 3D 水动力循环数值模型,并将其应用于温带和北极水域
  • 批准号:
    406561-2010
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Industrial R&D Fellowships (IRDF)
Computational jaw bone simulation using high-resolution finite element analysis considering alignment and texture of biological apatite crystallites
使用高分辨率有限元分析进行计算颌骨模拟,考虑生物磷灰石微晶的排列和纹理
  • 批准号:
    20791441
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Coupling the High Resolution of Laser Measurements and Finite-Element Simulations to Understand Transport Phenomena during Microdroplet Deposition
将高分辨率激光测量与有限元模拟相结合,了解微滴沉积过程中的传输现象
  • 批准号:
    0622849
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Coupling the High Resolution of Laser Measurements and Finite-Element Simulations to Understand Transport Phenomena during Microdroplet Deposition
将高分辨率激光测量与有限元模拟相结合,了解微滴沉积过程中的传输现象
  • 批准号:
    0336757
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了