Stochastic subgrid scale modeling and structure-preserving flux limiting for hyperbolic systems
双曲系统的随机亚网格尺度建模和结构保持通量限制
基本信息
- 批准号:525730336
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The objective of this project is the derivation of physics-compatible stochastic parametrizations for coarse-grained simulations of flow processes whose microscopic behavior is governed by hyperbolic systems of partial differential equations. Using the framework of variational multiscale (VMS) methods, a fine-grid finite element discretization will be averaged to extract stochastic subgrid scale models for the compressible Euler equations and for the shallow water equations. The proposed approach to subgrid upscaling resembles Reynolds-averaged Navier--Stokes (RANS) turbulence modeling. The filtered equations for "slow" coarse-scale components (averages) contain nonlinear terms that depend on "fast" fine-scale components (fluctuations). Replacing these terms with stochastic processes, one obtains a closed-form reduced system of evolution equations for the averages. There is no guarantee that such multiscale approximations are entropy stable and invariant domain preserving. In this project, physical admissibility of simulation results will be ensured using algebraic flux correction (AFC) tools and, in particular, novel convex limiting techniques developed by the principal investigator and his collaborators for standard finite element discretizations of hyperbolic problems. Monolithic AFC approaches make it possible to enforce not only discrete maximum principles but also sufficient conditions of entropy stability by switching to a structure-preserving low-order scheme in critical regions. The limited fluxes of a stochastic VMS method should be entropy dissipative and satisfy all relevant constraints. Existing relationships to entropy/eddy viscosity models will be investigated theoretically and numerically.
该项目的目标是推导出物理兼容的随机参数化,用于微观行为由偏微分方程双曲系统控制的粗粒度流过程模拟。利用变分多尺度(VMS)方法的框架,对细网格有限元离散化进行平均,提取可压缩欧拉方程和浅水方程的随机子网格尺度模型。提出的子网格升级方法类似于reynolds -average Navier- Stokes (RANS)湍流模型。“慢”粗尺度分量(平均)的过滤方程包含依赖于“快”细尺度分量(波动)的非线性项。用随机过程代替这些项,就得到了均值演化方程的封闭形式简化系统。不能保证这种多尺度近似是熵稳定的和不变域保持的。在这个项目中,将使用代数通量校正(AFC)工具,特别是由首席研究员及其合作者开发的用于双曲问题的标准有限元离散化的新颖凸极限技术,确保模拟结果的物理可接受性。单片AFC方法通过在临界区域切换到保持结构的低阶方案,不仅可以实现离散的极大值原理,而且可以实现熵稳定的充分条件。随机VMS方法的极限通量应是熵耗散的,并满足所有相关约束。现有的关系,熵/涡流粘度模型将研究理论和数值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Dmitri Kuzmin其他文献
Professor Dr. Dmitri Kuzmin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Dmitri Kuzmin', 18)}}的其他基金
Injection Moulding Simulation and Efficient NumericalMethods for the Determinatin of Fiber Orientations by Direct Calculation or Reconstruction of the Orientation Distribution Function
通过直接计算或重建取向分布函数来确定纤维取向的注射成型模拟和高效数值方法
- 批准号:
401649630 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
High-Resolution Finite Element Schemes for the Compressible MHD Equations
可压缩 MHD 方程的高分辨率有限元方案
- 批准号:
263071379 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Subgrid Scale Modeling and Efficient Finite Element Simulation of Fiber Suspension Flows
纤维悬浮液流的亚网格尺度建模和高效有限元模拟
- 批准号:
251122961 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
High-Resolution Multimesh hp-FEM for Simulation of Compressible Particle-Laden Gas Flows
用于模拟可压缩颗粒加载气流的高分辨率多网格 hp-FEM
- 批准号:
195871519 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Level-Set-Methoden für inkompressible Strömungen mit freien Grenzflächen
具有自由接口的不可压缩流的水平集方法
- 批准号:
36412402 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Herleitung und Realisierung von Methoden zur a posteriori Gitteradaptionen für hochauflösende Finite-Diskretisierungen mit Anwendung auf kompressible Gasströmungen
高分辨率有限离散化后验网格自适应方法的推导和实现,并应用于可压缩气体流
- 批准号:
29078310 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Herleitung und Realisierung von hochauflösenden FEM-Diskretisierungsverfahren und effizienten iterativen Lösern zur numerischen Simulation von konvektionsdominanten Strömungen
用于对流主导流数值模拟的高分辨率有限元离散方法和高效迭代求解器的推导和实现
- 批准号:
5407942 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Discrete networks and finite element approaches to rheological modeling of dense suspensions of particles via direct numerical simulations
通过直接数值模拟对颗粒稠密悬浮液进行流变建模的离散网络和有限元方法
- 批准号:
446888252 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Stabilization and Limiting Techniques for Galerkin Approximations of Hyperbolic Conservation Laws With High Order Finite Elements
高阶有限元双曲守恒定律伽辽金逼近的稳定和限制技术
- 批准号:
387630025 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Structure-preserving finite element discretization and optimal control of the shallow water equations with bathymetry on unstructured meshes
非结构化网格上测深浅水方程的保结构有限元离散化和最优控制
- 批准号:
504259026 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
LEAPS-MPS: Exploring various subgrid scale turbulence models via convergence analysis, data assimilation and deep learning
LEAPS-MPS:通过收敛分析、数据同化和深度学习探索各种亚网格尺度湍流模型
- 批准号:
2316894 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
RII Track-4: Turbulence Effects on Cloud Microphysical Processes: Development and Testing of Subgrid-Scale Parameterizations for Large Eddy Simulation
RII Track-4:湍流对云微物理过程的影响:大涡模拟的亚网格尺度参数化的开发和测试
- 批准号:
1929124 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
PREEVENTS Track 2: Collaborative Research: Subgrid-Scale Corrections to Increase the Accuracy and Efficiency of Storm Surge Models
预防事件轨道 2:协作研究:亚网格尺度修正以提高风暴潮模型的准确性和效率
- 批准号:
1664037 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
PREEVENTS Track 2: Collaborative Research: Subgrid-Scale Corrections to Increase the Accuracy and Efficiency of Storm Surge Models
预防事件轨道 2:协作研究:亚网格尺度修正以提高风暴潮模型的准确性和效率
- 批准号:
1664040 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
CDS&E: Appraisal of Subgrid Scale Closures in Reacting Turbulence via DNS Big Data
CDS
- 批准号:
1609120 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: A Langevin Subgrid Scale Closure and Discontinuous Galerkin Exascale Large Eddy Simulation of Complex Turbulent Flows
合作研究:复杂湍流的 Langevin 亚网格尺度闭合和不连续 Galerkin 百亿亿次大涡模拟
- 批准号:
1603131 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: A Langevin Subgrid Scale Closure and Discontinuous Galerkin Exascale Large Eddy Simulation of Complex Turbulent Flows
合作研究:复杂湍流的 Langevin 亚网格尺度闭合和不连续 Galerkin 百亿亿次大涡模拟
- 批准号:
1603589 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




