Stabilization and Limiting Techniques for Galerkin Approximations of Hyperbolic Conservation Laws With High Order Finite Elements

高阶有限元双曲守恒定律伽辽金逼近的稳定和限制技术

基本信息

项目摘要

This project is aimed at further development of novel monolithic convex limiting (MCL) techniques for finite element discretizations of nonlinear hyperbolic problems. The principal investigator's MCL methodology blends a standard high-order Galerkin discretization and a low-order algebraic version of the Lax-Friedrichs method in a manner which guarantees the validity of relevant maximum principles and entropy inequalities. The resulting nonlinear scheme is provably positivity-preserving and entropy stable. No free parameters are involved and the sparse form of the MCL-constrained discretization has the compact stencil of the piecewise-linear approximation on a submesh with the same nodes. The main focus of the first funding period was on the analysis and design of algebraic flux correction tools for continuous Galerkin methods using high-order Bernstein finite elements. The proposed sequel project will extend the algorithmic framework and theoretical foundations of MCL to general Runge-Kutta time discretizations, stationary problems, and discontinuous Galerkin (DG) methods. A task of particular importance will be the development of entropy correction tools that are suitable not only for scalar nonlinear semi-discrete problems but also for fully discrete approximations to hyperbolic systems. The proposed research endeavors will also include the development of hp-adaptive DG schemes equipped with a new kind of flux and slope limiters for the piecewise-linear subcell approximation in non-smooth macrocells. All new features will be implemented in the open-source C++ finite element library MFEM (https://mfem.org). Detailed theoretical studies and a comparison to other high-resolution DG schemes will be performed to assess the accuracy, robustness, and efficiency of the proposed algorithms.
本计画的目的是进一步发展新的整体凸极限技术,以应用于非线性双曲型问题的有限元素离散化。主要研究者的MCL方法融合了标准的高阶Galerkin离散化和低阶代数版本的Lax-Friedrichs方法,以保证相关最大值原理和熵不等式的有效性。由此产生的非线性计划是可证明的正保持和熵稳定。不涉及任何自由参数和稀疏形式的MCL约束离散化具有紧凑的模板上的分段线性近似的子网格具有相同的节点。第一个供资期的主要重点是使用高阶伯恩斯坦有限元分析和设计连续伽辽金法的代数通量校正工具。拟议的续集项目将扩展的算法框架和理论基础的MCL一般龙格库塔时间离散化,平稳的问题,和不连续的Galerkin(DG)方法。一项特别重要的任务是开发熵校正工具,这些工具不仅适用于纯量非线性半离散问题,而且适用于双曲系统的完全离散逼近。拟议的研究工作还将包括惠普自适应DG计划的发展配备了一种新的通量和斜率限制器的分段线性子细胞近似在非光滑宏细胞。所有新功能都将在开源C++有限元库MFEM(https://www.example.com)中实现。mfem.org详细的理论研究和其他高分辨率DG计划的比较将进行评估的准确性,鲁棒性和效率的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Dmitri Kuzmin其他文献

Professor Dr. Dmitri Kuzmin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Dmitri Kuzmin', 18)}}的其他基金

Injection Moulding Simulation and Efficient NumericalMethods for the Determinatin of Fiber Orientations by Direct Calculation or Reconstruction of the Orientation Distribution Function
通过直接计算或重建取向分布函数来确定纤维取向的注射成型模拟和高效数值方法
  • 批准号:
    401649630
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-Resolution Finite Element Schemes for the Compressible MHD Equations
可压缩 MHD 方程的高分辨率有限元方案
  • 批准号:
    263071379
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Subgrid Scale Modeling and Efficient Finite Element Simulation of Fiber Suspension Flows
纤维悬浮液流的亚网格尺度建模和高效有限元模拟
  • 批准号:
    251122961
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-Resolution Multimesh hp-FEM for Simulation of Compressible Particle-Laden Gas Flows
用于模拟可压缩颗粒加载气流的高分辨率多网格 hp-FEM
  • 批准号:
    195871519
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Level-Set-Methoden für inkompressible Strömungen mit freien Grenzflächen
具有自由接口的不可压缩流的水平集方法
  • 批准号:
    36412402
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Herleitung und Realisierung von Methoden zur a posteriori Gitteradaptionen für hochauflösende Finite-Diskretisierungen mit Anwendung auf kompressible Gasströmungen
高分辨率有限离散化后验网格自适应方法的推导和实现,并应用于可压缩气体流
  • 批准号:
    29078310
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Herleitung und Realisierung von hochauflösenden FEM-Diskretisierungsverfahren und effizienten iterativen Lösern zur numerischen Simulation von konvektionsdominanten Strömungen
用于对流主导流数值模拟的高分辨率有限元离散方法和高效迭代求解器的推导和实现
  • 批准号:
    5407942
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Discrete networks and finite element approaches to rheological modeling of dense suspensions of particles via direct numerical simulations
通过直接数值模拟对颗粒稠密悬浮液进行流变建模的离散网络和有限元方法
  • 批准号:
    446888252
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic subgrid scale modeling and structure-preserving flux limiting for hyperbolic systems
双曲系统的随机亚网格尺度建模和结构保持通量限制
  • 批准号:
    525730336
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Structure-preserving finite element discretization and optimal control of the shallow water equations with bathymetry on unstructured meshes
非结构化网格上测深浅水方程的保结构有限元离散化和最优控制
  • 批准号:
    504259026
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Evaluation of "Plain Japanese" training for medical professionals: Factors promoting and limiting its utilization in practical
医疗专业人员“简单日语”培训的评价:促进和限制其实际应用的因素
  • 批准号:
    24K20181
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Limiting False Positives in Empirical Asset Pricing Tests
限制实证资产定价测试中的误报
  • 批准号:
    DP240100277
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Imagining Better Futures of Health and Social Care with and for People with Energy Limiting Chronic Illnesses
与患有慢性疾病的人一起畅想健康和社会关怀的美好未来
  • 批准号:
    AH/X012263/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Fault Tolerant Current Limiting Superconducting Cable for Cryo-Electrified Systems
用于低温电气化系统的容错限流超导电缆
  • 批准号:
    2890181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Fault Tolerant Current Limiting Superconducting Cable for Cryo-Electrified Systems
用于低温电气化系统的容错限流超导电缆
  • 批准号:
    2894117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: Strain-limiting Cosserat Rods with Applications to Modeling Biological Fibers
合作研究:应变限制 Cosserat 棒在生物纤维建模中的应用
  • 批准号:
    2307563
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Strain-limiting Cosserat Rods with Applications to Modeling Biological Fibers
合作研究:应变限制 Cosserat 棒在生物纤维建模中的应用
  • 批准号:
    2307562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
LEAPS-MPS: Time-Discrete Regularized Variational Model for Brittle Fracture in Novel Strain-Limiting Elastic Solids
LEAPS-MPS:新型应变限制弹性固体中脆性断裂的时间离散正则化变分模型
  • 批准号:
    2316905
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Non-linear modelling of performance limiting MHD and disruptions in spherical tokamaks
球形托卡马克性能限制 MHD 和破坏的非线​​性建模
  • 批准号:
    2910483
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Using Philosophical Dialogues with Children to Understand Care and Wellbeing for Siblings of those with Life-Limiting Conditions
通过与儿童的哲学对话来了解对生命有限的兄弟姐妹的护理和福祉
  • 批准号:
    AH/X012174/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了