Tailoring Damping and Nonlinearities in Self-Excited Mechanical Systems
定制自激机械系统中的阻尼和非线性
基本信息
- 批准号:264065013
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In most mechanical engineering systems vibrations are unwanted. This is particularly true for self-excited vibrations, which manifest themselves as brake squeal in cars and trains, ground resonance in helicopters, galloping vibrations of overhead transmission lines, instabilities of high-speed rotors in oil-film bearings, among others. In some of these systems the consequences of the self-excited vibrations can be catastrophic. For none of the systems universally accepted solutions exist so far. All these vibration phenomena have in common that circulatory terms are present in their linearized equations of motion. They have different physical origins in each of the examples mentioned above. In the recent past, new results were obtained for optimizing the robustness of mechanical structures with respect to self-excited vibrations by avoiding symmetries in the spectrum. Even more recently, the interaction of circulatory terms and different forms of damping were studied systematically and some surprising new results were found. It was of course well known that damping may cause instability and self-excited vibrations in circulatory systems, but most of this knowledge was established for systems with a very small number of degrees of freedom only and not in a systematic way.In the equations of motion of engineering structures, the circulatory terms are difficult to alter, but damping usually can be modified, although in general the damping matrix can only be changed in certain ways. In the present project, the interaction of the different matrices characterizing a linear mechanical system (inertia, stiffness, gyroscopic, damping and circulatory) will be studied systematically, with view to designing structures with a greater robustness with regard to self-excited vibrations. The project will first be focused on autonomous linear systems and later also expanded to time-periodic and nonlinear systems. It is expected that this will lead to improved design methods for systems such as the ones mentioned above, with view to increasing the robustness against self-excited vibrations or at least to mitigate their consequences by reducing the limit cycles.
在大多数机械工程系统中,振动是不需要的。自激振动尤其如此,表现为汽车和火车的刹车尖叫声、直升机的地面共振、架空传输线的飞跃振动、油膜轴承中高速转子的不稳定等等。在其中一些系统中,自激振动的后果可能是灾难性的。因为到目前为止,还没有一个系统存在普遍接受的解决方案。所有这些振动现象都有一个共同点,那就是它们的线性化运动方程中都存在循环项。在上面提到的每个例子中,它们都有不同的物理起源。最近,人们通过避免频谱中的对称性来优化机械结构对自激振动的稳健性,得到了新的结果。最近,人们系统地研究了循环项与不同形式的阻尼项的相互作用,并发现了一些令人惊讶的新结果。众所周知,阻尼可能会导致循环系统的不稳定和自激振动,但大多数知识都是针对极少数自由度的系统建立的,而不是以系统的方式建立的。在工程结构的运动方程中,循环项很难改变,但阻尼通常是可以修改的,尽管通常只能通过某些方式改变阻尼矩阵。在本项目中,将系统地研究表征线性机械系统的不同矩阵(惯性、刚度、陀螺、阻尼和循环)之间的相互作用,以期设计出对自激振动具有更强稳健性的结构。该项目首先将重点放在自治的线性系统上,后来还将扩展到时间周期和非线性系统。预计这将导致改进上述系统的设计方法,以期增加对自激振动的稳健性,或至少通过减少极限环来减轻其后果。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of Damping for Squeal Avoidance in Disc Brakes
优化阻尼以避免盘式制动器中的尖叫声
- DOI:10.1002/pamm.201710156
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Hagedorn
- 通讯作者:Hagedorn
Stability of weakly damped MDGKN‐systems: The role of velocity proportional terms
弱阻尼 MDGKN 系统的稳定性:速度比例项的作用
- DOI:10.1002/zamm.201600288
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Hagedorn
- 通讯作者:Hagedorn
Robust Damping in Self‐Excited Mechanical Systems
自激机械系统中的稳健阻尼
- DOI:10.1002/pamm.201610336
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Clerkin;Hagedorn
- 通讯作者:Hagedorn
Damping Optimization in Simplified and Realistic Disc Brakes
简化且真实的盘式制动器中的阻尼优化
- DOI:10.1007/978-3-319-62713-7
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Wehner;Sampaio;Hagedorn
- 通讯作者:Hagedorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Hagedorn其他文献
Professor Dr. Peter Hagedorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Hagedorn', 18)}}的其他基金
Self-excited vibrations in time-variant systems
时变系统中的自激振动
- 批准号:
267028366 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Vibration Based Nonlinear Broadband Energy Harvesting
基于振动的非线性宽带能量收集
- 批准号:
210883424 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
High-frequency energy harvesting with mechanical frequency conversion
通过机械变频进行高频能量收集
- 批准号:
167079056 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Paradoxe Zustände in der Starrkörperdynamik unter Einfluss Coulombscher Reibkräfte
库仑摩擦力影响下刚体动力学的矛盾状态
- 批准号:
117923794 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Wave propagation in rotating continua under non-conservative perturbations: resonant deformation of the spectral mesh and combination resonance.
非保守扰动下旋转连续体中的波传播:谱网格的共振变形和组合共振。
- 批准号:
46629384 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Ultraschall-Motor basierend auf dem piezoelektrischen Schereffekt
基于压电剪切效应的超声波电机
- 批准号:
42165171 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Mathematical modelling of vortex excited oscillations of bundled conductors in overhead transmission lines
架空输电线路中束状导体涡激振荡的数学建模
- 批准号:
5418879 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Modeling and identification of non-linear effects of piezoceramic actuators subjected to weak electric fields
弱电场作用下压电陶瓷执行器非线性效应的建模和识别
- 批准号:
5280281 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Aktive Steuerung von Verzweigungen und Chaos in nichtlinearen elastischen Strukturen
非线性弹性结构中分支和混沌的主动控制
- 批准号:
5176038 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Robust stabilization and anti-resonance in parametric circulatory systems
参数循环系统中的鲁棒稳定和抗共振
- 批准号:
431399977 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Dissipation Mechanisms and Damping in Smart Elastomers with Intermolecular Organization
职业:具有分子间组织的智能弹性体的耗散机制和阻尼
- 批准号:
2238035 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research on Investigation of Damping Mechanism and Optimal Design of Metal Additively Manufactured Powder Damper
金属增材制造粉末阻尼器阻尼机理研究及优化设计研究
- 批准号:
23KJ2035 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
- 批准号:
2883937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Analysis of wall damping effect of turbulence using non-local eddy diffusivity
利用非局部涡扩散系数分析湍流壁面阻尼效应
- 批准号:
23K03670 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Influence of viscous damping model on time-history response of elastic-plastic systems
粘性阻尼模型对弹塑性系统时程响应的影响
- 批准号:
23K04122 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Damping model required for seismic design using large-scale 3D model with multi-directional input
使用具有多方向输入的大型 3D 模型进行抗震设计所需的阻尼模型
- 批准号:
22H01645 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Robustness Enhancement of Vibration-Controlled Structures by Damping Capacity Design Method
通过阻尼能力设计方法增强振动控制结构的鲁棒性
- 批准号:
22H01643 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on the damping of the upper structure of buildings and its frequency and amplitude dependence by reconstructing the wave field
通过重构波场研究建筑物上部结构的阻尼及其频率和振幅依赖性
- 批准号:
22K04417 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Damping of pressure pulsations in CANDU fuel bundles
CANDU 燃料棒束中压力脉动的阻尼
- 批准号:
578558-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Reversible adhesion damping tapes based on layers of liquid crystalline elastomer
基于液晶弹性体层的可逆粘合阻尼胶带
- 批准号:
EP/X035468/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant