Self-excited vibrations in time-variant systems
时变系统中的自激振动
基本信息
- 批准号:267028366
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Time-variant and in particular periodic mechanical systems are common in Machine Dynamics. The theory of linear time periodic differential equations was developed about a hundred years ago by Floquet. In applied mechanics, parametrically excited vibrations are studied with Floquet theory, which together with the particular structure of the equations of motion in mechanical systems leads to special phenomena (e.g. combination resonances). In the past, particularly conservative and stable linear systems were studied at length, which may become unstable due to additional parametric excitation (parametric resonance). In Machine Dynamics, however, usually these effects are only relevant for systems which are extremely weakly damped, and they therefore are only rarely observed in reality. They also tend to occur only in very narrow frequency ranges of the parametric excitation. More recently, time periodic mechanical systems have also become important in the context of self-excited vibrations. In a number of engineering systems, self-excitation appears in the equations of motion in the form of circulatory terms (skew symmetric matrices in the coordinate proportional forces). In many of these cases, the frequency of the parametrical excitation is much lower than that of the self-excited vibrations, so that parametric resonances in the usual sense do not play a role. Even so, the periodic coefficients may be crucial for stability. An example of this type of self-excited vibrations is break squeal. Ignoring the periodic coefficients in the numerical analysis usually leads to an overestimation of the susceptibility of a structure to become unstable, although in some cases it may also be underestimated. In the planned project, the influence of small periodic perturbations of the linearized equations of motion of circulatory systems will be studied. Subcritical and supercritical Hopf bifurcations as well as the domains of attraction of the different stationary solutions will be examined for nonlinear systems. For large periodic systems (many thousand or many hundred thousand degrees of freedom) it is planned to develop methods for dealing with the problem in a FEM environment, with the aim to allow an efficient stability analysis in this environment.
时变的,特别是周期性的机械系统是常见的机器动力学。线性时间周期微分方程的理论大约在一百年前由Floquet发展起来。在应用力学中,Floquet理论研究参数激励振动,它与机械系统中运动方程的特殊结构一起导致特殊现象(例如组合共振)。在过去,特别是保守和稳定的线性系统进行了详细的研究,这可能会变得不稳定,由于额外的参数激励(参数共振)。然而,在机器动力学中,这些效应通常只与阻尼极弱的系统相关,因此在现实中很少观察到。它们也倾向于仅在参数激励的非常窄的频率范围内发生。最近,时间周期性机械系统在自激振动的背景下也变得重要。在许多工程系统中,自激以循环项的形式出现在运动方程中(坐标比例力中的斜对称矩阵)。在这些情况中的许多情况下,参数激励的频率比自激振动的频率低得多,使得通常意义上的参数共振不起作用。即便如此,周期系数对于稳定性可能是至关重要的。这种类型的自激振动的一个例子是破碎尖叫声。在数值分析中忽略周期系数通常会导致高估结构变得不稳定的敏感性,尽管在某些情况下它也可能被低估。在计划的项目中,将研究循环系统运动的线性化方程的小周期扰动的影响。亚临界和超临界Hopf分岔以及不同的固定解决方案的吸引域将被检查的非线性系统。对于大型周期性系统(数千或数十万自由度),计划开发在FEM环境中处理问题的方法,目的是在这种环境中进行有效的稳定性分析。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FEM with Floquet Theory for Non-slender Elastic Columns Subject to Harmonic Applied Axial Force Using 2D and 3D Solid Elements
- DOI:10.1007/978-3-030-13720-5_22
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:E. Clerkin;Markus Rieken
- 通讯作者:E. Clerkin;Markus Rieken
Asynchronous parametric excitation, total instability and its occurrence in engineering structures
工程结构中的异步参量激励、总体失稳及其发生
- DOI:10.1016/j.jsv.2018.05.003
- 发表时间:2018
- 期刊:
- 影响因子:4.7
- 作者:Artem Karev;Peter Hagedorn;Daniel Hochlenert
- 通讯作者:Daniel Hochlenert
Some remarks on parametric excitation in circulatory systems
关于循环系统参数激励的一些评论
- DOI:10.1002/pamm.201800061
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Artem Karev;Lara De Broeck;Peter Hagedorn
- 通讯作者:Peter Hagedorn
Atypical parametric instability in linear and nonlinear systems
线性和非线性系统中的非典型参数不稳定性
- DOI:10.1016/j.proeng.2017.09.118
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Peter Hagedorn;Artem Karev;Daniel Hochlenert
- 通讯作者:Daniel Hochlenert
Global stability effects of parametric excitation
参数激励的全局稳定性效应
- DOI:10.1016/j.jsv.2019.02.014
- 发表时间:2019
- 期刊:
- 影响因子:4.7
- 作者:Artem Karev;Peter Hagedorn
- 通讯作者:Peter Hagedorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Hagedorn其他文献
Professor Dr. Peter Hagedorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Hagedorn', 18)}}的其他基金
Tailoring Damping and Nonlinearities in Self-Excited Mechanical Systems
定制自激机械系统中的阻尼和非线性
- 批准号:
264065013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Vibration Based Nonlinear Broadband Energy Harvesting
基于振动的非线性宽带能量收集
- 批准号:
210883424 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
High-frequency energy harvesting with mechanical frequency conversion
通过机械变频进行高频能量收集
- 批准号:
167079056 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Paradoxe Zustände in der Starrkörperdynamik unter Einfluss Coulombscher Reibkräfte
库仑摩擦力影响下刚体动力学的矛盾状态
- 批准号:
117923794 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Wave propagation in rotating continua under non-conservative perturbations: resonant deformation of the spectral mesh and combination resonance.
非保守扰动下旋转连续体中的波传播:谱网格的共振变形和组合共振。
- 批准号:
46629384 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Ultraschall-Motor basierend auf dem piezoelektrischen Schereffekt
基于压电剪切效应的超声波电机
- 批准号:
42165171 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Mathematical modelling of vortex excited oscillations of bundled conductors in overhead transmission lines
架空输电线路中束状导体涡激振荡的数学建模
- 批准号:
5418879 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Modeling and identification of non-linear effects of piezoceramic actuators subjected to weak electric fields
弱电场作用下压电陶瓷执行器非线性效应的建模和识别
- 批准号:
5280281 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Aktive Steuerung von Verzweigungen und Chaos in nichtlinearen elastischen Strukturen
非线性弹性结构中分支和混沌的主动控制
- 批准号:
5176038 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Robust stabilization and anti-resonance in parametric circulatory systems
参数循环系统中的鲁棒稳定和抗共振
- 批准号:
431399977 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
分子高振动-转动激发态结构中的复杂相互作用
- 批准号:11074204
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
相似海外基金
Understanding Essential Protein Dynamics through the Anharmonic Properties of Thermally Excited Vibrations
通过热激发振动的非简谐特性了解基本蛋白质动力学
- 批准号:
10566333 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding and improving energy dissipation and vibration damping in structures subject to self-excited irregular vibrations – linking data driven approaches with modelling
了解和改善受自激不规则振动影响的结构中的能量耗散和振动阻尼 – 将数据驱动方法与建模联系起来
- 批准号:
314996260 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Study on the characteristic and the countermeasures against self-excited vibrations which are generated in the support part of high stack
高堆垛支撑部位自激振动特性及对策研究
- 批准号:
20560211 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Vibration Suppression of a Wind Mill
风车减振研究
- 批准号:
16560208 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation on aerodynamic excited blade vibrations in transonic flow
跨音速流中气动激励叶片振动研究
- 批准号:
5188554 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Wire-Screen Belt Vibrations Coupled with Fluid Motion in a Fourdrinier Paper Machine
长网造纸机中丝网带振动与流体运动的耦合
- 批准号:
10650232 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A STUDY ON THE LEAKAGE-FLOW-INDUCED VIBRATIONS IN A TWO-DIMENSIONAL NARROW PASSAGE
二维狭窄通道中漏流振动的研究
- 批准号:
03452138 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Quantum Spectroscopy and Dynamics of Molecules with Highly Excited Large Amplitude Vibrations
高激发大振幅振动的量子光谱和分子动力学
- 批准号:
9006672 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant