Existence and regularity for parabolic quasi minimizers on metric measure spaces

度量测度空间上抛物线拟极小化器的存在性和正则性

基本信息

  • 批准号:
    271596446
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2015
  • 资助国家:
    德国
  • 起止时间:
    2014-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The aim of this project is to make a substantial contrubution to existence and regularity theory for solutions of nonlinear parabolic minimization problems on general metric measure spaces. It is intended to establish a systematic approach to the generalization of a result by A. Grigor'yan and L. Saloff-Coste on the relation between solutions of the heat equation on Riemannian manifolds and the validity of Harnack estimates. The interest is to generalize this result in two ways: Firstly, one intends to consider metric measure spaces, supporting a doubling property of the measure and a Poincaré inequality, instead of a Riemannian manifold. Secondly, instead of the (linear) heat equation, nonlinear problems should be investigated.Main difficulties of the project consist on one hand in the very general concept of metric measure spaces, on the other hand in the nonlinearity of the partial differential equations and integral functionals under consideration. On general metric measure spaces it is not possible to speak of "direction" or "integration by parts" and consequently there's a lack of a suitable form of derivative. This makes it necessary to work with so-called "upper gradients" which are defined according to a characterization of Sobolev functions in the Euklidean space by to the power p integrable vector fields. This concept does not allow to introduce a reasonable definition of a partial differential equation, however it helps to generalize minimization problems to the context of metric measure spaces. The nonlinearity of the problem causes a number of further severe difficulties, which are basically already known from the theory of nonlinear parabolic differential equations in the n dimensional Euklidean space. These difficulties have to be overcome on the level of pure minimization problems -- without any associated partial differential equation behind.
本项目的目的是对一般度量测度空间上非线性抛物极小化问题解的存在性和正则性理论作出实质性的贡献。本文旨在建立一种系统的方法来推广A. Grigor'yan和L. Saloff-Coste关于黎曼流形上热方程解与Harnack估计有效性之间的关系。有趣的是将这个结果推广到两个方面:首先,我们打算考虑度量测度空间,支持测度的加倍性质和庞加莱不等式,而不是黎曼流形。其次,而不是(线性)热方程,非线性问题应调查。该项目的主要困难在于一方面在度量测度空间的非常一般的概念,另一方面在非线性的偏微分方程和积分泛函正在考虑。在一般的度量测度空间中,不可能谈论“方向”或“分部积分”,因此缺乏适当形式的导数。这使得有必要与所谓的“上梯度”,这是根据定义的特征的Sobolev函数在Euklidean空间的幂p可积向量场。这个概念不允许引入偏微分方程的合理定义,但它有助于将最小化问题推广到度量测度空间。非线性的问题造成了一些进一步严重的困难,这基本上是已知的非线性抛物型微分方程在n维Euklidean空间的理论。这些困难必须在纯最小化问题的水平上被克服-没有任何相关的偏微分方程。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finite speed propagation for parabolic quasiminimizers
抛物线拟极小化器的有限速度传播
Harnack inequality for parabolic quasi minimizers on metric spaces
度量空间上抛物线拟极小化器的 Harnack 不等式
A fairly strong stability result for parabolic quasiminimizers
抛物线拟极小化器的相当强的稳定性结果
  • DOI:
    10.1002/mana.201700018
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Y. Fujishima;J. Habermann
  • 通讯作者:
    J. Habermann
Stability for parabolic quasi minimizers in metric measure spaces
公制测度空间中抛物线拟极小化器的稳定性
Existence of parabolic minimizers on metric measure spaces
度量测度空间上抛物线最小化器的存在性
  • DOI:
    10.1016/j.na.2018.06.005
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Collins;A. Heràn
  • 通讯作者:
    A. Heràn
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Jens Habermann其他文献

Privatdozent Dr. Jens Habermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

铁磁现象与超导电性的数学理论
  • 批准号:
    10471050
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Discrete Maximal Parabolic Regularity for Time Discontinuous Galerkin Methods with Applications
时间不连续伽辽金方法的离散最大抛物线正则及其应用
  • 批准号:
    1913133
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Regularity vs. Singularity for Elliptic and Parabolic Systems
椭圆和抛物线系统的正则性与奇异性
  • 批准号:
    1854788
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
  • 批准号:
    417627993
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Parabolic Obstacle-Type Problems: Regularity, Existence, and Deviation
抛物线障碍类型问题:规律性、存在性和偏差
  • 批准号:
    407265145
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Boundary regularity for elliptic and parabolic equations
椭圆方程和抛物方程的边界正则性
  • 批准号:
    18J00965
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Regularity for doubly nonlinear degenerate and singular parabolic equations and a geometric flow
双非线性简并和奇异抛物线方程和几何流的正则性
  • 批准号:
    18K03375
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
  • 批准号:
    1939627
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Besov regularity of parabolic differential equations on Lipschitz domains
Lipschitz 域上抛物型微分方程的 Besov 正则
  • 批准号:
    320243287
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mathematical analysis for concrete carbonation applying the regularity of a solution of quasi-linear parabolic equations
应用拟线性抛物型方程解的规律性对混凝土碳化进行数学分析
  • 批准号:
    16K17636
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了