Development of a forecasting model for the prediction of product sales using search engine query data
开发使用搜索引擎查询数据预测产品销售的预测模型
基本信息
- 批准号:280139258
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Forecasting delivery dates and quantity of sales is a big challenge concerning the logistical planning. In most cases the logistical planning is aggravated by fluctuations concerning sales. Sales fluctuations may arise due to advertising or promotion events. This uncertainty may cause delayed deliveries or quality issues regarding the material. As a consequence the logistical performance decreases such as the service level diminishes. Giving the growing importance of effective sales planning many companies rely on quantitative methods of sales forecasting. The shortcomings of these conventional forecasting approaches are in particular a low timeliness of data, a low level of detail and a high forecasting effort. The objective of this research proposal is to develop and evaluate an innovative approach for product specified sales forecasting. The forecasting model shall be based on internet search engine query data. Search engine query data contains keyword information (e. g. time, quantity) which are related with a consumption intention. Thus, it is expected to decrease forecasting errors and increase the forecast horizon compared to existing forecasting models. These potentials of search engine query data for sales forecasting shall be analyzed and revealed. Also knowledge shall be generated concerning the limitations of the achieved approach. The research forms the basis for the development of industrial-suited forecasting models which are based on search engine query data.
预测交货日期和销售数量是物流规划的一大挑战。在大多数情况下,物流规划因销售波动而恶化。销售波动可能因广告或促销活动而产生。这种不确定性可能会导致延迟交付或有关材料的质量问题。因此,后勤绩效下降,如服务水平下降。由于有效的销售计划越来越重要,许多公司依赖于销售预测的定量方法。这些传统预测方法的缺点特别是数据的及时性低、细节水平低和预测工作量大。本研究建议的目的是开发和评估一种创新的方法,用于产品指定的销售预测。预测模型应基于互联网搜索引擎查询数据。搜索引擎查询数据包含关键字信息(e. G.时间、数量),这些与消费意图有关。因此,与现有的预测模型相比,预计将减少预测误差并增加预测范围。这些潜力的搜索引擎查询数据的销售预测进行分析和揭示。此外,还应了解所采用方法的局限性。该研究形成了基于搜索引擎查询数据的适合工业的预测模型的发展的基础。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Absatzprognose mit Suchmaschinendaten
利用搜索引擎数据进行销售预测
- DOI:10.3139/104.111657
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Fritzsch;Ullmann;Stonis;Nyhuis
- 通讯作者:Nyhuis
Can google trends improve sales forecasts on a product level?
- DOI:10.1080/13504851.2019.1686110
- 发表时间:2019-11-03
- 期刊:
- 影响因子:1.6
- 作者:Fritzsch, Benjamin;Wenger, Kai;Ullmann, Georg
- 通讯作者:Ullmann, Georg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr.-Ing. Georg Ullmann其他文献
Dr.-Ing. Georg Ullmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr.-Ing. Georg Ullmann', 18)}}的其他基金
Development of a causal model for efficient disassembly network design for XXL-products
开发 XXL 产品高效拆卸网络设计的因果模型
- 批准号:
271230719 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Planning of dynamic layouts for the field assembly of XXL-products under competing floor space demands
在竞争的占地面积需求下规划 XXL 产品现场组装的动态布局
- 批准号:
251648490 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Development of an approach for the combined control of disassembly and postprocessing processes in plant dismantling
开发工厂拆除中拆卸和后处理过程的联合控制方法
- 批准号:
244566591 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Development of a long-term water resources forecasting model using global climate big data
利用全球气候大数据开发长期水资源预测模型
- 批准号:
23KJ0924 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Hazard forecasting method by development of standard model of volcanic eruption
建立火山喷发标准模型的灾害预报方法
- 批准号:
19H02404 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of new inter-city travel demand forecasting model focus on the rich time-series information of big data
聚焦大数据丰富的时间序列信息,开发新型城际出行需求预测模型
- 批准号:
17K14736 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on model development for sales forecasting of new consumer nondurable goods and product life cycle management
新型非耐用消费品销售预测与产品生命周期管理模型开发研究
- 批准号:
26780242 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of wide area road surface temperature forecasting model for urban area
城区广域路面温度预测模型开发
- 批准号:
23510200 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and validation of practical travel forecasting model with variable demand considering induced freight traffic
考虑诱导货运量的可变需求实用出行预测模型的开发和验证
- 批准号:
23760491 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of an Integrated Travel Demand Forecasting Model for Consensus Building
开发综合出行需求预测模型以建立共识
- 批准号:
20860042 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (Start-up)
Dynamism of Asian Multimode Network and Development of International Logistics Forecasting Model
亚洲多式联运网络的动态与国际物流预测模型的发展
- 批准号:
18560526 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development for Statistical Earthquake forecasting. Seismic and geodetic anomalies preceding the rupture around the focal region detected by statistical models
统计地震预报的发展。
- 批准号:
17200021 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
A development of travel demand forecasting system composed of an activity simulation model and a dynamic traffic simulation model
活动模拟模型和动态交通模拟模型组成的出行需求预测系统的开发
- 批准号:
11555139 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B).














{{item.name}}会员




