A hybrid stochastic-deterministic model calibration method with application to subsurface CO2 storage in geological formations

一种混合随机-确定性模型校准方法,应用于地质构造中地下二氧化碳封存

基本信息

项目摘要

Engineers increasingly attract notice to the natural subsurface for very different and possibly competing kinds of applications. On the one hand, the subsurface contains natural resources. On the other hand, it is used for temporary or permanent storage of waste and gas. For all of these competing use types, it is indispensable for our society to assess their performance, limitations, risks and mutual restrictions. The quality of model predictions depends strongly on the quality of the model parameters. Within this proposal, we have a major focus on gas storage in the subsurface, and in particular we focus on CO2 storage in deep saline formations since we have a strong background and experience in this field. However, we emphasize that the methods applied and developed for this field of engineering application can be transferred to other related fields in a straightforward way. From previous studies it is known that the main prediction errors and uncertainties in simulating processes in the subsurface associated with gas storage, or more general with injection of a fluid, arises from uncertainties in the subsurface structure and material parameters. A most recent example is the modelling and simulation for the Ketzin pilot storage site in the state of Brandenburg/Germany. A comprehensive exploration and monitoring program has been conducted in order to provide best possible data according to the state of the art. Most important in the context of this proposal is the history matching of the observation data, i.e.(,) mainly observed time series of pressure and the arrival time of injected CO2 in two observation wells. Models are required to have predictive power for the future behavior of the reservoirs with increased confidence so that they can be used to provide robust decision support for managing the injection and storage. This proposal aims to develop computationally efficient and reliable method for history matching with application to subsurface CO2 storage. The methods of quantifying uncertainties and parameter sensitivities in history matching can be divided into two classes: (1) statistics/stochastic-based approaches (e.g., in which multiple samples are drawn from conditional distributions) and (2) deterministic optimization-based approaches (e.g., in which a single optimal model is calibrated and some estimates of post-calibration covariance are provided). The current project will discuss both the approaches. The goal of this project is a comparison and hybridization of stochastic and optimization-based methods for uncertainty quantification in model calibration and history matching, thus combining the best aspects of both worlds.
工程师们越来越多地注意到自然地下的各种不同的、可能是相互竞争的应用。一方面,地下蕴藏着自然资源。另一方面,它用于临时或永久储存废物和气体。对于所有这些相互竞争的使用类型,我们的社会评估它们的性能、局限性、风险和相互限制是必不可少的。模型预测的质量很大程度上取决于模型参数的质量。在该方案中,我们主要关注地下储气,特别是深层盐层的二氧化碳储气,因为我们在该领域拥有强大的背景和经验。然而,我们强调,在这个工程应用领域应用和开发的方法可以以一种直接的方式转移到其他相关领域。从以往的研究中我们知道,与储气或流体注入相关的地下模拟过程的主要预测误差和不确定性来自地下结构和材料参数的不确定性。最近的一个例子是对德国勃兰登堡州的Ketzin试验储存场址进行建模和模拟。开展了一项全面的勘探和监测方案,以便根据最新技术状况提供尽可能最好的数据。在本方案中最重要的是观测数据的历史匹配,即(,)主要是观测到的两口观测井的压力时间序列和注入CO2到达时间。模型需要对储层的未来动态具有更强的预测能力,以便为管理注入和储存提供强大的决策支持。本课题旨在开发计算高效、可靠的历史拟合方法,并将其应用于地下CO2封存。历史匹配中不确定性和参数敏感性的量化方法可分为两类:(1)基于统计/随机的方法(例如,从条件分布中提取多个样本)和(2)基于确定性优化的方法(例如,校准单个最优模型并提供一些校准后协方差的估计)。当前的项目将讨论这两种方法。本项目的目标是比较和融合随机和基于优化的方法在模型校准和历史匹配中的不确定性量化,从而结合两者的最佳方面。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential Design of Computer Experiments for the Solution of Bayesian Inverse Problems
Sequential Design of Computer Experiments for the Computation of Bayesian Model Evidence
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Wolfgang Nowak其他文献

Professor Dr.-Ing. Wolfgang Nowak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Wolfgang Nowak', 18)}}的其他基金

A reverse engineering approach to optimal design of site investigation schemes and monitoring networks
现场调查方案和监测网络优化设计的逆向工程方法
  • 批准号:
    187824825
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimierte Informationsverarbeitung in Methoden zur stochastischen Simulation und zur Abschätzung von Parameterwerten: Unsichere zeitabhängige Strömungs- und Transportvorgänge im Untergrund
随机模拟和参数值估计方法中的优化信息处理:地下不确定的时间相关流动和传输过程
  • 批准号:
    46547152
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Selection and Justification of Hydro-Morphodynamic Models using Information Theory: Active Learning on Surrogate Emulators
使用信息论选择和论证水形态动力学模型:代理模拟器的主动学习
  • 批准号:
    513054523
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于随机模型检测的网络脆弱性分析研究
  • 批准号:
    60573144
  • 批准年份:
    2005
  • 资助金额:
    5.0 万元
  • 项目类别:
    面上项目
二阶段随机优化的并行方法
  • 批准号:
    10161002
  • 批准年份:
    2001
  • 资助金额:
    4.5 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2206085
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Bridging the Gap between Deterministic and Stochastic Structures for Mixed Stochasticity System Design
职业:弥合混合随机系统设计的确定性结构和随机结构之间的差距
  • 批准号:
    2142290
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamics of Deterministic and Stochastic Neural Models
确定性和随机神经模型的动力学
  • 批准号:
    563628-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Novel Discontinuous Galerkin Methods for Deterministic and Stochastic Optimization Problems with Inequality Constraints
具有不等式约束的确定性和随机优化问题的新型间断伽辽金方法
  • 批准号:
    2111004
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Numerical Methods for Deterministic and Stochastic Phase Field Models
确定性和随机相场模型的数值方法
  • 批准号:
    2110728
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Determining Degrees of Freedom in Nonlinear Complex Systems: Deterministic and Stochastic Applications
确定非线性复杂系统中的自由度:确定性和随机应用
  • 批准号:
    2009859
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Research Initiation Award: Stochastic and Deterministic Solutions to Unsteady Nanofluid Mixed Convection Problems
研究启动奖:非稳态纳米流体混合对流问题的随机和确定性解决方案
  • 批准号:
    1901316
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deterministic and Stochastic Perturbations of Dynamical Systems
动力系统的确定性和随机扰动
  • 批准号:
    RGPIN-2015-04076
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Simulation of Deterministic and Stochastic Nano systems
确定性和随机纳米系统的建模和仿真
  • 批准号:
    RGPIN-2015-04579
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了