Research on stabilization effect and qualitative properties of standing waves for variational problems with nonlocal interactions
非局域相互作用变分问题驻波镇定效应及定性研究
基本信息
- 批准号:21K03317
- 负责人:
- 金额:$ 2.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
本研究では、非線形シュレディンガー方程式における非局所的相互作用による定在波解の安定化に着目して、定在波の存在に関する閾値や定性的性質等を解析する。今年度の具体的な研究実績は次の通りである。静岡大学の足達慎二氏と慶應義塾大学の生駒典久氏共に、ソボレフ優臨界であることを許す非線形項を持つ半線形シュレディンガー方程式を考察して、変分法を用いて正値解の存在を示した。この研究結果は、学術雑誌「Manuscripta Mathematica」に掲載が決定している。本研究で用いたアプリオリ評価やレベル集合の解析手法は、他の微分方程式の研究にも応用できると期待している。特に、非局所項方程式において、ある種の近似を行うと準線形方程式が得られることが知られているが、準線形項の制御に本研究で用いたアプリオリ評価を応用できると考えている。他には、ボルドー大学のMathieu Colin氏と共に、2次元シュレディンガー・マックスウェル方程式の定常問題や非線形光学で現れる他の微分方程式系における定在波解の安定性に関する研究を行った。また、マドリード・カルロス第3大学のPablo Alvarez-Caudevilla氏と共同で、4階非線形シュレディンガー方程式系の基底状態解の存在や分類に関する研究を行った。これらの研究内容については、現在論文を執筆中である。さらに、カリフォルニア州立大学のHichem Hajaiej氏と分数べきシュレディンガー方程式の定常問題に関する共同研究を開始した。
The purpose of this study is to determine the stability of the wave solution, the stability of the wave solution, the existence of the wave solution, and the qualitative properties of the wave in this study. This year's "specific research" has made a lot of progress. In Shizuo University, there is a study of the existence of an equation in the form of a semi-shaped equation, and a positive solution is used to investigate the equation. The results of the study and the academic journal "Manuscripta Mathematica" were used to determine the results of the study. The purpose of this study is to use the collection of analytical techniques and differential equations to study the data in this study. Special, non-local equations, linear equations, linear equations. This paper deals with the problem of the steady state of the equation, the system of differential equations, the system of differential equations, the stability of the wave solution, and the stability of the wave solution. In the third university, there are Pablo Alvarez-Caudevilla 's common equations and 4-year non-linear equations. There is a fundamental solution to the equation. The content of the research is very important, and it is now in the process of literature review. This is the beginning of the joint study of steady problems, steady problems
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Workshop on recent progress in standing waves for nonlinear Schrodinger equations
非线性薛定谔方程驻波最新进展研讨会
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Existence and asymptotic behavior of positive solutions for a class of locally superlinear Schr?dinger equation
一类局部超线性薛定谔方程正解的存在性及其渐近行为
- DOI:10.1007/s00229-022-01428-5
- 发表时间:2022
- 期刊:
- 影响因子:0.6
- 作者:Adachi Shinji;Ikoma Norihisa;Watanabe Tatsuya
- 通讯作者:Watanabe Tatsuya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
渡辺 達也其他文献
渡辺 達也的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('渡辺 達也', 18)}}的其他基金
基底状態解の変分的特徴付けに基づく非線形分散型微分方程式の定在波の安定性解析
基于基态解变分表征的非线性色散微分方程驻波稳定性分析
- 批准号:
24K06804 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
変分法を用いた非線形楕円型方程式の解の形状および漸近挙動の研究
用变分法研究非线性椭圆方程解的形状和渐近行为
- 批准号:
07J00685 - 财政年份:2007
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似海外基金
特異点を持つ超曲面に対する変分問題及び幾何解析と離散曲面論の新展開
奇点超曲面的变分问题与几何分析及离散曲面理论的新进展
- 批准号:
23K20212 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
非コンパクト型変分問題の爆発・消失現象と領域・作用素の特異幾何構造の相関
非紧变分问题中的爆炸/消失现象与区域和算子的奇异几何结构之间的相关性
- 批准号:
23K25781 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
高階幾何学的変分問題と勾配流
高阶几何变分问题和梯度流
- 批准号:
24K00532 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
非コンパクト型変分問題の爆発・消失現象と領域・作用素の特異幾何構造の相関
非紧变分问题中的爆炸/消失现象与区域和算子的奇异几何结构之间的相关性
- 批准号:
23H01084 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
調和移植が拓く臨界型変分問題の解析
调和移植产生的关键变分问题分析
- 批准号:
23K13001 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
弾性体方程式系に対する正則性理論と亀裂の進展を記述する特異変分問題の解析
弹性体方程组正则理论及描述裂纹扩展的奇异变分问题分析
- 批准号:
22KJ0176 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
高階幾何学的変分問題の研究と勾配流の漸近解析への応用
高阶几何变分问题研究及其在梯度流渐近分析中的应用
- 批准号:
22K20339 - 财政年份:2022
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
変分問題、最適化問題と非線形偏微分方程式の総合的研究
变分问题、优化问题和非线性偏微分方程的综合研究
- 批准号:
22K03389 - 财政年份:2022
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Independent Variable Problem. Welfare Stateness as an Explanatory Concept.
自变量问题。
- 批准号:
499033181 - 财政年份:2022
- 资助金额:
$ 2.58万 - 项目类别:
Publication Grants
共形写像に関連する変分問題と計量のpullbackに関する変分問題の研究
与保形映射和度量回调相关的变分问题研究
- 批准号:
22K03290 - 财政年份:2022
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)