Multimodal sparse signal representations and their role in Compressed Sensing
多模态稀疏信号表示及其在压缩感知中的作用
基本信息
- 批准号:290606669
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Compressed Sensing (CS) has an enormous impact in the field of Medical Imaging, since it allows shifting the expensive and time consuming data acquisition process to a signal reconstruction task. In Magnetic Resonance Imaging (MRI) for example, the image acquisition process suffers from the sequential sampling of spatial Fourier coefficients in k-space, making MRI a rather slow modality. This is a severe limitation that on the one hand reduces the throughput of patients in the clinical environment and on the other hand makes it hard to capture moving body parts like in cardiac MRI for example. In Computed Tomography (CT), another medical imaging modality, the image contrast reflects the attenuation of X-rays. Repeated or long-term scans are risky because the patients are exposed to high radiation doses. CS relies on two simple, yet powerful principles, namely a sparse signal representation and the incoherence between the sensing domain and the sparse representation domain. Based on these principles, recovery guarantees have been derived that give a lower bound on the number of measurements needed for perfect reconstruction. In general, analytically given bases like, e.g. the Fourier or wavelet basis, are employed to sparsely represent a wide range of signal classes. Nowadays, state of the art recovery results are obtained by utilizing methods aiming at finding a suitable frame or dictionary that provides a sparser signal representation due to its adaptation to the particular signal class of interest. Learning an adequate signal representation heavily depends on the right choice and the number of training examples. These important issues are tackled by the investigation of the sample complexity of the learning process. In this project, we aim at investigating CS and sparse signal representations in a multimodal context. Often, one and the same scene or object can be sensed through more than one modality, without much additional effort. In many scenarios such multimodal sensing is even provided inherently due to the particular hardware setting. For example, the fusion of images from different modalities has become common practice in medical imaging, leading to systems that provide a combined acquisition like e.g. PET-CT or PET-MRI. The project addresses four strongly interconnected research questions in the above-mentioned context of multimodal sparse signal representations and their role in compressed sensing. (1) How can the statistical dependency of the modalities be modeled and how can such a model be learned? (2) How much training data is needed in order to find reliable estimates of the model s parameters? (3) What are necessary and sufficient conditions on the signal model and the sensing matrix in order to guarantee reconstruction from few multimodal measurements? (4) How do the gathered results impact bimodal medical imaging in terms of reconstruction accuracy and how can we deal with unregistered bimodal measurements?
压缩感知(CS)在医学成像领域具有巨大的影响,因为它允许将昂贵且耗时的数据采集过程转移到信号重建任务。例如,在磁共振成像(MRI)中,图像采集过程受到k空间中的空间傅立叶系数的顺序采样的影响,使得MRI成为相当慢的模态。这是一个严重的限制,一方面降低了临床环境中患者的吞吐量,另一方面使得难以捕获移动的身体部位,例如在心脏MRI中。在计算机断层扫描(CT)(另一种医学成像模式)中,图像对比度反映X射线的衰减。重复或长期扫描是有风险的,因为患者暴露在高辐射剂量下。CS依赖于两个简单但强大的原则,即稀疏信号表示和感测域与稀疏表示域之间的不相干性。基于这些原则,恢复保证已经得到了完美重建所需的测量数量的下限。一般来说,解析给出的基础,如,例如傅立叶或小波基,被用来稀疏地表示广泛的信号类别。如今,通过利用旨在找到合适的帧或字典的方法来获得现有技术的恢复结果,所述合适的帧或字典由于其对感兴趣的特定信号类别的适应而提供更稀疏的信号表示。学习适当的信号表示在很大程度上取决于正确的选择和训练样本的数量。这些重要的问题是通过调查样本的学习过程的复杂性。在这个项目中,我们的目标是调查CS和稀疏信号表示在多模式的情况下。通常,同一个场景或物体可以通过一种以上的模态来感知,而无需太多额外的努力。在许多场景中,由于特定的硬件设置,甚至固有地提供这种多模态感测。例如,来自不同模态的图像的融合已经成为医学成像中的常见实践,导致提供组合采集的系统,例如PET-CT或PET-MRI。该项目解决了上述多模态稀疏信号表示及其在压缩感知中的作用背景下的四个密切相关的研究问题。(1)如何对模态的统计依赖性进行建模,以及如何学习这样的模型?(2)为了找到模型参数的可靠估计,需要多少训练数据?(3)为了保证从几个多模态测量中重建,信号模型和传感矩阵的必要和充分条件是什么?(4)收集的结果在重建精度方面如何影响双峰医学成像,以及我们如何处理未注册的双峰测量?
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint learning dictionary and discriminative features for high dimensional data
- DOI:10.1109/icpr.2016.7899661
- 发表时间:2016-12
- 期刊:
- 影响因子:0
- 作者:Xian Wei;Yuanxiang Li;Hao Shen;M. Kleinsteuber;Y. Murphey
- 通讯作者:Xian Wei;Yuanxiang Li;Hao Shen;M. Kleinsteuber;Y. Murphey
Dynamical Textures Modeling via Joint Video Dictionary Learning
通过联合视频字典学习进行动态纹理建模
- DOI:10.1109/tip.2017.2691549
- 发表时间:2017-06
- 期刊:
- 影响因子:10.6
- 作者:Wei Xian;Li Yuanxiang;Shen Hao;Chen Fang;Kleinsteuber Martin;Wang Zhongfeng
- 通讯作者:Wang Zhongfeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Klaus Diepold, since 9/2016其他文献
Professor Dr.-Ing. Klaus Diepold, since 9/2016的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
微分差分多项式系统高效消元算法研究
- 批准号:11101411
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
稀疏表示及其在盲源分离中的应用研究
- 批准号:61104053
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于Sparse-Land模型的SAR图像噪声抑制与分割
- 批准号:60971128
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
高维稀疏数据聚类研究
- 批准号:70771007
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:面上项目
信号盲处理的稀疏表示方法
- 批准号:60475004
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208386 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208385 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Self-collimating Single Photon Emission Breast Tomography System with Three-Dimensional Sparse Position-Sensitive Detectors
具有三维稀疏位置敏感探测器的自准直单光子发射乳腺断层扫描系统
- 批准号:
10625452 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Self-collimating Single Photon Emission Breast Tomography System with Three-Dimensional Sparse Position-Sensitive Detectors
具有三维稀疏位置敏感探测器的自准直单光子发射乳腺断层扫描系统
- 批准号:
10432218 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Learnable Sparse Coding and Its Application to Inverse Problems
可学习的稀疏编码及其在反问题中的应用
- 批准号:
21K17766 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
- 批准号:
10428538 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
- 批准号:
10183606 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:
RGPIN-2017-05939 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual