Nonlinear finite element technology for stable and locking-free analysis of large deformation problems

非线性有限元技术可稳定、无锁定地分析大变形问题

基本信息

项目摘要

The ongoing trend in all branches of industry to replace physical by virtual prototypes, not only to increase efficiency and accelerate development processes, but also to increase sustainability by saving resources, puts increasing demands on forecasting reliability of simulation tools. The finite element method is one of the work horses in computational engineering and thus it is remarkable that there are still some fundamental unsolved problems in finite element technology. An example is the persisting quest for a generally applicable finite element formulation that is free from locking and free from artificial instabilities at the same time in problems involving large deformations. This proposal builds upon previous research from the project Adaptive, deformation-dependent finite element formulations for stable and locking-free analysis of large deformation problems. The two main topics were the analysis of existing elements, with the goal to attain a better understanding of element behavior in nonlinear regimes, and the development of new nonlinear finite elements, both with respect to nonlinear locking phenomena and artificial instability (hourglassing). The most important scientific results were the detection of previously unknown distinctly nonlinear locking phenomena, not present in linear analysis, including a method to resolve it, a thorough analysis of artificial instability phenomena, which gave rise to a classification into geometric and material hourglassing and the development of a new method to avoid artificial hourglassing in the presence of large compressive strains. The first objective of the proposed follow-up research project is to answer questions and resolve related issues that have emerged during the first funding period, particularly concerning material hourglassing, including material anisotropy, as well as a newly detected geometrical hourglassing phenomenon occurring in inhomogeneous states of deformation. Moreover, the newly developed finite element formulations, methods and algorithms will be tested and extended for applicability to distorted and unstructured meshes and isogeometric formulations. Compared to the first project, there will be a stronger focus on element stability than on nonlinear locking. The scientific work program is devised along the overarching motif of carefully analyzing the origin of parasitic phenomena before developing remedies. Here, analytic results from theoretical mechanics will be revisited and put into the prespective of numerical methods. The philosophy is to remove causes instead of fighting symptoms. The work program includes development and documentation of a comprehensive set of nonlinear benchmark setups to test convergence and stability properties of nonlinear finite elements. Providing corresponding primary data as well as open-source software on a publicly available database will be an important output in order to support and foster research in this area.
在所有行业分支中,虚拟原型取代物理原型的趋势正在持续,不仅可以提高效率和加速开发过程,而且还可以通过节省资源来提高可持续性,这对仿真工具的预测可靠性提出了越来越高的要求。有限元法是计算工程中的一种重要方法,但值得注意的是,在有限元技术中仍有一些基本问题没有得到解决。一个例子是一个普遍适用的有限元公式,是免费的锁定和免费的人工不稳定性,同时在涉及大变形的问题的持续追求。该提案建立在项目“自适应、变形相关的有限元公式”之前的研究基础上,用于大变形问题的稳定和无锁定分析。两个主要主题是现有元素的分析,目的是更好地理解非线性区域中的元素行为,以及新的非线性有限元的开发,无论是关于非线性锁定现象和人工不稳定性(沙漏)。最重要的科学成果是检测到以前未知的明显的非线性锁定现象,不存在于线性分析中,包括解决它的方法,对人为不稳定现象的彻底分析,这导致了几何和材料沙漏的分类,并开发了一种新方法,以避免在大压缩应变存在下的人工沙漏。拟议的后续研究项目的第一个目标是回答问题,并解决在第一个资助期内出现的相关问题,特别是关于材料沙漏,包括材料各向异性,以及在不均匀变形状态下新发现的几何沙漏现象。此外,新开发的有限元公式,方法和算法将进行测试和扩展,适用于扭曲和非结构化网格和等几何公式。与第一个项目相比,将更加关注单元稳定性而不是非线性锁定。科学工作方案是沿着首要主题设计的,即在开发补救措施之前仔细分析寄生现象的起源。在这里,理论力学的分析结果将被重新审视,并投入到数值方法的前景。哲学是消除原因,而不是对抗症状。工作计划包括开发和记录一套全面的非线性基准设置,以测试非线性有限元的收敛性和稳定性。提供相应的原始数据以及公开数据库的开放源码软件将是支持和促进这一领域研究的一项重要产出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Manfred Bischoff其他文献

Professor Dr.-Ing. Manfred Bischoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Manfred Bischoff', 18)}}的其他基金

Variational methods for mass scaling
质量缩放的变分方法
  • 批准号:
    279006948
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NURBS-FEM für Kontaktprobleme
用于解决接触问题的 NURBS-FEM
  • 批准号:
    212273885
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effiziente Algorithmen mit dualen Lagrange-Multiplikatoren für dreidimensionale, dynamische Kontaktprobleme
用于三维动态接触问题的双拉格朗日乘子的高效算法
  • 批准号:
    168822784
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thermomechanically coupled analysis of thin-walled structures
薄壁结构的热机耦合分析
  • 批准号:
    5215588
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Intrinsically locking-free formulations for problems in structural mechanics
针对结构力学问题的本质无锁公式
  • 批准号:
    452589815
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Whitham调制理论在色散方程间断初值问题中的应用
  • 批准号:
    12001556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A NONLINEAR MEMBRANE BASED ANALYSIS FOR ESTIMATING THE RUPTURE POTENTIAL OF ABDOMINAL AORTIC ANEURYSMS
基于非线性膜的分析估计腹主动脉瘤的破裂可能性
  • 批准号:
    10280976
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A NONLINEAR MEMBRANE BASED ANALYSIS FOR ESTIMATING THE RUPTURE POTENTIAL OF ABDOMINAL AORTIC ANEURYSMS
基于非线性膜的分析估计腹主动脉瘤的破裂可能性
  • 批准号:
    10696243
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A NONLINEAR MEMBRANE BASED ANALYSIS FOR ESTIMATING THE RUPTURE POTENTIAL OF ABDOMINAL AORTIC ANEURYSMS
基于非线性膜的分析估计腹主动脉瘤的破裂可能性
  • 批准号:
    10478276
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Polynomial Optimization and Finite Element Methods for Nonlinear Mechanics
非线性力学的多项式优化和有限元方法
  • 批准号:
    2012658
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Finite element methods for nonlinear partial differential equations on curved domains
弯曲域上非线性偏微分方程的有限元方法
  • 批准号:
    19K14590
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A finite element model for the analysis of the nonlinear mechanical behavior of hybrid composite materials
用于分析混合复合材料非线性力学行为的有限元模型
  • 批准号:
    433734847
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Finite element methods for nonlinear reaction-diffusion systems with applications in biology.
非线性反应扩散系统的有限元方法及其在生物学中的应用。
  • 批准号:
    340739-2013
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Finite Element Time Domain Method for Nonlinear Dispersive Media
非线性色散介质的有限元时域方法
  • 批准号:
    490284-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了