Visualization of nanometer scale defects responsible for optical loss and laser induced breakdown in binary coating materials for the UV spectral region

导致紫外光谱区二元涂层材料中光损耗和激光诱导击穿的纳米级缺陷的可视化

基本信息

  • 批准号:
    317442515
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Nowadays UV optics are considered as important key components for many innovative applications in photonics andlaser technology. Among many others, the large areas of UV laser material processing, laser medicine or particularly,semiconductor lithography impose demanding challenges onto the quality of optical UV-components. Both the opticalloss and the laser power handling capability of the components are of outmost importance for the success of a laserconcept and its applications. Laser induced breakdown of optical components occurs at much lower irradiationintensity as predicted by theories based on damage due to photoionization. Since decades, it is a well-acceptedinterpretation that the reduction of optical damage threshold, and also the increase of optical losses are caused bydefects, such as nanometer-sized particles, voids, and the interfaces as well as stoichiometric deficiencies. Thesedefects could be embedded in the thin coating layer, at layer- or substrate interfaces, or below the substrate surface.Despite the broad acceptance of this theory in the optical community, mostly these suggested defects either remainedinvisible for direct observation, or it was not possible to verify their influence on the damage behavior directly.In the proposed research endeavor, it is planned to identify and study the dominant contributions to optical losses andlaser induced breakdown in optical coatings for UV-laser applications. As mentioned before, the reason for thischallenge is the suggested defect size of a few nanometers. The approach within this proposal for identifying nanodefectsresponsible for optical breakdown, is double-tracked: On the one hand, corresponding artificial defects shall beincorporated in state of the art optical coatings to reproduce optical damage behavior, and on the other hand an opticalprobe techniques shall be developed, to obtain topographies of optical properties on the nanometer scale.
如今,紫外光学器件被认为是光子学和激光技术中许多创新应用的重要关键部件。其中,大面积的紫外激光材料加工、激光医学或特别是半导体光刻对光学紫外组件的质量提出了苛刻的挑战。元件的光损耗和激光功率处理能力对激光概念的成功及其应用至关重要。光学元件的激光诱导击穿发生在低得多的辐照强度,如基于光致电离损伤的理论所预测的。几十年来,人们普遍认为,纳米颗粒、空洞、界面缺陷以及化学计量不足是导致光损伤阈值降低和光损耗增加的主要原因。这些缺陷可以嵌入在薄涂层中,在层或基底界面处,或在基底表面之下。尽管这一理论在光学界被广泛接受,但大多数这些建议的缺陷要么无法直接观察,要么无法直接验证它们对损伤行为的影响。在拟议的研究奋进中,计划确定和研究紫外激光应用中光学涂层中对光学损耗和激光诱导击穿的主要贡献。如前所述,这一挑战的原因是建议的缺陷尺寸为几纳米。该方案中用于识别导致光学击穿的纳米缺陷的方法是双轨的:一方面,将相应的人工缺陷并入最先进的光学涂层中以再现光学损伤行为,另一方面,将开发光学探针技术以获得纳米尺度上的光学特性的形貌。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laser-induced pit formation in UV-antireflective coatings
  • DOI:
    10.1117/12.2500338
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Paschel;I. Balasa;L. Jensen;X. Cheng;Z. Wang;D. Ristau
  • 通讯作者:
    S. Paschel;I. Balasa;L. Jensen;X. Cheng;Z. Wang;D. Ristau
Waterproof coatings for high-power laser cavities
  • DOI:
    10.1038/s41377-018-0118-6
  • 发表时间:
    2019-01-23
  • 期刊:
  • 影响因子:
    19.4
  • 作者:
    Cheng, Xinbin;Dong, Siyu;Wang, Zhanshan
  • 通讯作者:
    Wang, Zhanshan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Detlev Ristau其他文献

Professor Dr. Detlev Ristau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Detlev Ristau', 18)}}的其他基金

Development of an ion beam sputtering process for 2 meter optics in astronomy - IBS2000
天文学中 2 米光学器件离子束溅射工艺的开发 - IBS2000
  • 批准号:
    452244676
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    New Instrumentation for Research
Theory and control technique of optical loss in multilayer coatings used in femtosecond laser cavities
飞秒激光腔多层膜光损耗理论与控制技术
  • 批准号:
    448756425
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

钙磷基纳米粒子的分布降解及其成骨系细胞响应机制研究
  • 批准号:
    81171682
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
纳米羟基磷灰石的蛋白缓释及其对成骨细胞影响机制研究
  • 批准号:
    30640041
  • 批准年份:
    2006
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
  • 批准号:
    2224902
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nanometer-scale 3D analysis of brain tissue of schizophrenia cases in the U.S.
对美国精神分裂症病例脑组织进行纳米级 3D 分析
  • 批准号:
    23H02800
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A visible machine learning system to discover targeted treatment solutions in cancer
可见的机器学习系统,用于发现癌症的靶向治疗解决方案
  • 批准号:
    10784808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
  • 批准号:
    2224942
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Abberior 3D-STED microscope for super-resolution imaging
用于超分辨率成像的 Abberior 3D-STED 显微镜
  • 批准号:
    10630881
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10707375
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of high-performance organic photovoltaic materials that do not require nanometer-scale phase separation
开发不需要纳米级相分离的高性能有机光伏材料
  • 批准号:
    22K19091
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nanometer-to-micrometer Length Scale Mechanical and Tribological Characterization System
纳米到微米长度尺度的机械和摩擦学表征系统
  • 批准号:
    RTI-2023-00432
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Super-Resolution Imaging of Higher-Order Heterochromatin Structure for Early Detection of Lung Carcinogenesis
高阶异染色质结构的超分辨率成像用于早期检测肺癌
  • 批准号:
    10592368
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Modeling the spatiotemporal properties of crosstalk between RYR-mediated and IP3R-mediated calcium signaling in cardiac myocytes
模拟心肌细胞中 RYR 介导和 IP3R 介导的钙信号传导之间串扰的时空特性
  • 批准号:
    10701689
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了