Stable knotted phases in semiflexible polymers
半柔性聚合物中的稳定打结相
基本信息
- 批准号:317744069
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, we plan to perform computer simulations to study the occurrence of knots in linear polymer chains. For flexible polymers it is well known that knots of various types form with a certain probability. Recently, we found in the phase diagram of semiflexible theta polymers well-defined regions, where knots of a specific type exist not only by chance but are thermodynamically stable. This means that almost every conformation is characterized by the same knot type. By combining the multicanoncial algorithm and the replica-exchange Monte Carlo simulation method, we want to understand the properties of these "knotted" phases in more detail. For example, we want to elucidate why there is a clear phase coexistence at the transition into the knotted phases, although no latent heat is observable.To this end we shall employ analyses of the free-energy landscape. In particular, we plan to calculate the free-energy barriers and the transition pathways into the knotted conformations. From preliminary simulations, we suspect that knotted conformations are suppressed in the case that the bond length is identical to the equilibrium distance of the interaction between non-adjacent monomers. For a better understanding of this observation, we will systematically vary the bond length and investigate its influence on the occurrence of stable knotted phases.Next we shall conduct computer simulations to investigate how an adsorbing surface influences the knotted polymers. In a first step, we plan to simulate a semiflexible coarse-grained polymer and investigate which thermodynamically stable knots survive the adsorption process. Besides that we want to get a deeper understanding of the generic aspects of adsorption of semiflexible polymers. This study of a coarse-grained model also serves as a preparation for more demanding simulations of chemically realistic polymers interacting with a surface. In the past few years quite impressive progress has been made in preparation and detection of single polymers adsorbed on surfaces, so that it is now possible to detect polymers consisting of down to 20 monomers. Therefore, we aim to design the simulations in this work such that they can be extended to more realistic models.
在这个项目中,我们计划进行计算机模拟来研究线性聚合物链中结的发生。对于柔性聚合物,众所周知,各种类型的结以一定的概率形成。最近,我们发现在半柔性θ聚合物的相图中定义明确的区域,其中特定类型的结不仅偶然存在,而且是稳定的。这意味着几乎每种构象都具有相同的结类型。通过结合多通道算法和复制交换蒙特卡罗模拟方法,我们希望更详细地了解这些“打结”相的性质。例如,我们想阐明为什么在向打结相的过渡中有明显的相共存,尽管没有观察到潜热,为此,我们将采用自由能景观的分析。特别是,我们计划计算的自由能障碍和过渡到打结构象的途径。从初步的模拟,我们怀疑,打结的构象被抑制的情况下,键长是相同的非相邻单体之间的相互作用的平衡距离。为了更好地理解这一观察结果,我们将系统地改变键长,并研究其对稳定打结相的影响。接下来,我们将进行计算机模拟,研究吸附表面如何影响打结聚合物。在第一步中,我们计划模拟一个半柔性的粗颗粒聚合物,并调查哪些稳定的结生存的吸附过程。除此之外,我们还想更深入地了解半柔性聚合物吸附的一般方面。这项研究的粗粒度模型也作为一个准备更苛刻的模拟化学现实的聚合物与表面相互作用。在过去的几年中,在制备和检测吸附在表面上的单一聚合物方面取得了令人印象深刻的进展,因此现在可以检测由20个单体组成的聚合物。因此,我们的目标是设计这项工作中的模拟,使它们可以扩展到更现实的模型。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficiencies of joint non-local update moves in Monte Carlo simulations of coarse-grained polymers
粗粒聚合物蒙特卡罗模拟中联合非局部更新移动的效率
- DOI:10.1016/j.cpc.2017.10.014
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:K.S. Austin;M. Marenz;W. Janke
- 通讯作者:W. Janke
Generalized Ensemble Computer Simulations of Macromolecules
大分子的广义系综计算机模拟
- DOI:10.1142/9789813232105_0004
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:W. Janke
- 通讯作者:W. Janke
Interplay of Adsorption and Semiflexibility: Structural Behavior of Grafted Polymers under Poor Solvent Conditions
- DOI:10.1021/acs.macromol.6b02738
- 发表时间:2017-05-23
- 期刊:
- 影响因子:5.5
- 作者:Austin, Kieran S.;Zierenberg, Johannes;Janke, Wolfhard
- 通讯作者:Janke, Wolfhard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Wolfhard Janke其他文献
Professor Dr. Wolfhard Janke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Wolfhard Janke', 18)}}的其他基金
Free-energy landscapes of semiflexible theta-polymer aggregation with and without external force
有外力和无外力的半柔性θ聚合物聚集的自由能景观
- 批准号:
277838335 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Polymer Conformations and Diffusive Transport in Disordered Environments
无序环境中的聚合物构象和扩散传输
- 批准号:
184114354 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Units
Simulationen der Statik und Dynamik von Spingläsern
自旋玻璃的静力学和动力学模拟
- 批准号:
5430028 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Investigation of thermodynamic properties of lattice and off-lattice models for proteins and polymers
研究蛋白质和聚合物的晶格和非晶格模型的热力学性质
- 批准号:
5446650 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Phasenübergänge in Systemen mit einschränkender Geometrie
具有限制几何形状的系统中的相变
- 批准号:
5432849 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Hochtemperaturreihen für Random-Bond-Modelle und Spingläser
用于随机键合模型和自旋玻璃的高温系列
- 批准号:
5262038 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350344 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350343 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Derived Symmetries and the Alekseev-Torossian Conjecture: From Algebraic Geometry to Knotted Objects in Dimension 4
导出的对称性和 Alekseev-Torossian 猜想:从代数几何到 4 维中的结物体
- 批准号:
2305407 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Engineering Knotted Peptide Therapeutics for Pediatric Brain Tumor Patients
针对小儿脑肿瘤患者的工程打结肽治疗
- 批准号:
10531428 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Knotted surface invariants from 4-dimensional topological quantum field theories
4 维拓扑量子场论的打结表面不变量
- 批准号:
532076-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Knotted surface invariants from 4-dimensional topological quantum field theories
4 维拓扑量子场论的打结表面不变量
- 批准号:
532076-2019 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Engineering knotted peptide therapeutics for pediatric brain tumor patients
为儿童脑肿瘤患者设计打结肽疗法
- 批准号:
9897193 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Knotted surface invariants from 4-dimensional topological quantum field theories
4 维拓扑量子场论的打结表面不变量
- 批准号:
532076-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Simulation of a knotted polymer under confinement
约束下打结聚合物的模拟
- 批准号:
540030-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Free energy calculation of knotted polymers confined to nanochannels
仅限于纳米通道的打结聚合物的自由能计算
- 批准号:
526932-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards