Mass Transport Models on Networks

网络上的大众运输模型

基本信息

项目摘要

The study of mass transport processes in one-and two dimensional systems led to considerable progress in the understanding of statistical systems out-of-equilibrium, for which guiding principles and classification schemes are missing in general. Usually these studies focus on simple regular topologies. On the other hand, a variety of out-of-equilibrium processes is going on in natural systems, which are nowadays summarized under complex networks. The analysis of dynamical processes on complex networks is just in their infancy. An important class of processes is mass transport ( mass in a generic sense of flow of particles, energy, information or traffic) for which we shall implement the ubiquitous noise, inherent in any transport, via a stochastic description. We shall focus on generalizations of the zero-range process on non-trivial topologies, which may serve as building blocks for larger networks in the spirit of the renormalization group, but remain analytically tractable. For the field of network dynamics this should provide an analytic understanding as well as steps towards an embedding into a larger context and a classification of stationary states observed in network simulations. From the perspective of statistical physics out-of-equilibrium, our project aims at generalizations towards more realistic geometries, real processes such as protein traffic inside cells, and more realistic (e.g. open) boundary conditions, non-zero range processes with short- and long-range interactions and feedbacks, extensions of fluctuation theorems and analysis of transients in the approach of stationary states. The expertise of our two groups in mass transport and numerical simulations (W. Janke) and network dynamics and analytical calculations (H. Meyer-Ortmanns) will supplement each other and lead to a productive collaboration when it is combined.
对一维和二维系统中质量输运过程的研究使得对统计系统非平衡状态的理解取得了相当大的进展,这类系统通常缺乏指导原则和分类方案。这些研究通常集中在简单的规则拓扑上。另一方面,自然系统中也发生着各种不平衡过程,这些过程现在被归纳为复杂的网络。复杂网络上动态过程的分析才刚刚起步。一类重要的过程是质量传递(一般意义上的粒子、能量、信息或交通的流动),我们将通过随机描述实现任何传递中固有的无所不在的噪声。我们将关注非平凡拓扑上的零范围过程的推广,这些拓扑可以作为重正化群精神中更大网络的构建块,但在分析上仍然是可处理的。对于网络动力学领域,这应该提供一种分析性的理解,以及在更大的背景下嵌入的步骤,以及在网络模拟中观察到的固定状态的分类。从统计物理失衡的角度来看,我们的项目旨在推广到更现实的几何形状,真实的过程,如细胞内的蛋白质运输,更现实的(如开放)边界条件,具有短期和长期相互作用和反馈的非零范围过程,波动定理的扩展以及在稳态方法中的瞬态分析。我们两个小组在质量运输和数值模拟(W. Janke)和网络动力学和分析计算(H. Meyer-Ortmanns)方面的专业知识将相互补充,并在结合时产生富有成效的合作。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emergence of dynamic phases in the presence of different kinds of open boundaries in stochastic transport with short-range interactions
短程相互作用的随机输运中存在不同种类的开放边界时动态相的出现
Boundary-drive–induced formation of aggregate condensates in stochastic transport with short-range interactions
边界驱动诱导的短程相互作用随机输运中聚集凝聚物的形成
  • DOI:
    10.1209/0295-5075/111/30001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Nagel;H. Meyer-Ortmanns;W. Janke
  • 通讯作者:
    W. Janke
Numerical survey of the tunable condensate shape and scaling laws in pair-factorized steady states
对因式稳态下可调凝聚态形状和标度定律的数值研究
Coarse-Grained Modeling of Genetic Circuits as a Function of the Inherent Time Scales
作为固有时间尺度函数的遗传电路的粗粒度建模
  • DOI:
    10.1103/physreve.87.062706
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Labavić;H. Nagel;W. Janke;H. Meyer-Ortmanns
  • 通讯作者:
    H. Meyer-Ortmanns
A simple non-equilibrium, statistical-physics toy model of thin-film growth
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Wolfhard Janke其他文献

Professor Dr. Wolfhard Janke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Wolfhard Janke', 18)}}的其他基金

Stable knotted phases in semiflexible polymers
半柔性聚合物中的稳定打结相
  • 批准号:
    317744069
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Free-energy landscapes of semiflexible theta-polymer aggregation with and without external force
有外力和无外力的半柔性θ聚合物聚集的自由能景观
  • 批准号:
    277838335
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Polymer Conformations and Diffusive Transport in Disordered Environments
无序环境中的聚合物构象和扩散传输
  • 批准号:
    184114354
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Simulationen der Statik und Dynamik von Spingläsern
自旋玻璃的静力学和动力学模拟
  • 批准号:
    5430028
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of thermodynamic properties of lattice and off-lattice models for proteins and polymers
研究蛋白质和聚合物的晶格和非晶格模型的热力学性质
  • 批准号:
    5446650
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Phasenübergänge in Systemen mit einschränkender Geometrie
具有限制几何形状的系统中的相变
  • 批准号:
    5432849
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hochtemperaturreihen für Random-Bond-Modelle und Spingläser
用于随机键合模型和自旋玻璃的高温系列
  • 批准号:
    5262038
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Nonequilibrium Dynamics of Macromolecules
大分子的非平衡动力学
  • 批准号:
    469830597
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring the role of vitamin transport in insect models of disease vector biology
探索维生素运输在病媒生物学昆虫模型中的作用
  • 批准号:
    2884651
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Machine-learning quantum surrogate models to simulate energy transport across interfaces
机器学习量子替代模型来模拟跨界面的能量传输
  • 批准号:
    2886134
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
  • 批准号:
    2220811
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Machine learning models to extract accurate material transport
机器学习模型可提取准确的材料传输
  • 批准号:
    2887164
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the atmospheric transport and fate of fluorinated Persistent Organic Pollutants with global models
利用全球模型了解氟化持久性有机污染物的大气迁移和归宿
  • 批准号:
    2898143
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Construction of drug transport/metabolism research models by improving functions of human tissue-derived cells
通过改善人体组织来源细胞的功能构建药物转运/代谢研究模型
  • 批准号:
    23H02646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining In Vitro and In Silico Models to Investigate Antiretroviral Drug Transport Across the Blood Brain Barrier for the Treatment of HIV-1 Infection in the Brain
结合体外和计算机模型研究抗逆转录病毒药物跨血脑屏障转运以治疗大脑中的 HIV-1 感染
  • 批准号:
    10838759
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Exploiting Quantum Computing for Large-Scale Transport Models
利用量子计算进行大规模运输模型
  • 批准号:
    10030783
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Improved computational models for particle transport in turbulent wall-bounded flows
改进的湍流壁面流动中粒子输运的计算模型
  • 批准号:
    RGPIN-2022-04981
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Uplift histories of landscapes from optimal transport inverse models
从最优传输逆模型提升景观历史
  • 批准号:
    2751902
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了