Electrowetting with Atomic Layer Deposition (EWALD)

原子层沉积电润湿 (EWALD)

基本信息

项目摘要

Within the project, hydrophobic surface structures should be researched in the special case of electrowetting on dielectrics (EWOD). One attribute of hydrophobic surfaces is the low flow resistivity of fluids and the fluid can easily move through capillaries and finally providing a high volume plug flow.The creation of hydrophobicity is done by a specific designed surface structure. Furthermore, it is possible to tune this effect with suitable materials at the boundary interface. Finally, this effect can be tuned and controlled by electrowetting. This controlling is done by an electrical field in between the electrode under the surface and the fluid.In this project surface structures will be investigated, where all three methods are combined to create an ideal controllable surface. The surface structures should be built with sacrificial layer technology, whereby the electrodes will be deposited with atomic layer deposition (ALD), isolated by ultrathin isolating layers, also deposited by ALD.With depositing an extra dielectric layer on top of the electrode it is possible to influence the wettability additionally. The EWOD-Principle is suitable for controlling the wettability of the surface with a low electrical voltage due to the thin layers.In a microfluidic system consisting of multiple electrodes it is possible to generate, move and divide fluidic driblets with a modulated control.Scope of this project is to develop such a concept. It should be shown with prototypes that the voltage, necessary for the movement of the driblet could be reduced due to the very thin ALD dielectric layers (1 monolayer up to a few nanometres). Due to the shrinking of layer height the control voltage decreases from ca. 40V to a few volts. Additionally, it is possible to structure the surface with different topologies so that the hydrophobicity will be increased. This structures are also CMOS compatible. With these topics the project creates the fundamentals for efficient controllable microfluidic chips with integrated control electronics for complex lab-on-chip-applications.The work packages of this project reach from modelling the surface structure and layout, the material choice, simulation of electrowetting to prototyping and measurement of such structures. Furthermore, the design of measurement systems for prototype evaluation is included in the working packages also.
在该项目中,应在电介质电润湿(EWOD)的特殊情况下研究疏水表面结构。疏水性表面的一个属性是流体的低流动阻力,并且流体可以轻松地穿过毛细管并最终提供高容量的活塞流。疏水性的产生是通过特定设计的表面结构来完成的。此外,可以在边界界面处使用合适的材料来调节这种效应。最后,这种效应可以通过电润湿来调节和控制。这种控制是通过表面下的电极和流体之间的电场来完成的。在该项目中,将研究表面结构,其中将所有三种方法结合起来以创建理想的可控表面。表面结构应采用牺牲层技术构建,其中电极将通过原子层沉积 (ALD) 进行沉积,并通过超薄隔离层进行隔离,也通过 ALD 进行沉积。通过在电极顶部沉积额外的介电层,可以额外影响润湿性。由于薄层,EWOD 原理适用于以低电压控制表面的润湿性。在由多个电极组成的微流体系统中,可以通过调制控制来生成、移动和划分流体液滴。该项目的范围是开发这样的概念。应该通过原型来证明,由于 ALD 介电层非常薄(1 个单层至几纳米),因此可以降低液滴运动所需的电压。由于层高的缩小,控制电压从约降低。 40V到几伏。此外,可以用不同的拓扑构造表面,从而增加疏水性。该结构也与 CMOS 兼容。通过这些主题,该项目为复杂芯片实验室应用的具有集成控制电子器件的高效可控微流控芯片奠定了基础。该项目的工作包涵盖表面结构和布局建模、材料选择、电润湿模拟到此类结构的原型设计和测量。此外,用于原型评估的测量系统的设计也包含在工作包中。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decreasing the Actuation Voltage in Electrowetting on Dielectric With Thin and Micro-Structured Dielectric
降低薄微结构电介质电润湿驱动电压
3rd YRA MedTech Symposium 2019: May 24 / 2019 / FH Aachen
2019 年第三届 YRA 医疗技术研讨会:2019 年 5 月 24 日 / 亚琛应用技术大学
  • DOI:
    10.17185/duepublico/48750
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Türk;R. Viga;H. Vogt
  • 通讯作者:
    H. Vogt
Optimization of the dielectric layer for electrowetting on dielectric
用于电介质电润湿的电介质层的优化
  • DOI:
    10.1016/j.vlsi.2019.03.004
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Türk;A. Schug;R. Viga;A. Jupe;H. Vogt
  • 通讯作者:
    H. Vogt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Holger Vogt其他文献

Professor Dr.-Ing. Holger Vogt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Holger Vogt', 18)}}的其他基金

Entwicklung von innovativen Kontaktierungsmethoden für Leistungsbauelemente sowie Erstellung eines Simulationswerkzeugs für statische und dynamische Berechnungen der Stromverteilung in Halbleiterbauelementen hoher Leistung
开发功率元件的创新接触方法以及创建用于高性能半导体元件中电流分布的静态和动态计算的仿真工具
  • 批准号:
    5182048
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Cross-correlated optical responses of magnetic excitons in atomic-layer magnetoelectrics
原子层磁电中磁激子的互相关光学响应
  • 批准号:
    24K17019
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elucidation and control of excitonic potentials in atomic layer materials
原子层材料中激子势的阐明和控制
  • 批准号:
    23K13043
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Electronic states of artificially-stacked atomic-layer thinfilms with Rashba effect and topological electronic states
具有Rashba效应的人工堆叠原子层薄膜的电子态和拓扑电子态
  • 批准号:
    23H01853
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Atomic-Layer Dependent Adhesion of Two-Dimensional Transitional Metal Carbides (MXenes)
二维过渡金属碳化物 (MXenes) 的原子层依赖性粘附
  • 批准号:
    2414708
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Ultra Fast X-ray absorption study on photo-excited electron in Pt / one-atomic layer ox ide systems
Pt/单原子层氧化物体系中光激发电子的超快X射线吸收研究
  • 批准号:
    22KF0009
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Microscopic study of quantum phase transition on atomic-layer superconductors
原子层超导体量子相变的微观研究
  • 批准号:
    22KJ0920
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
  • 批准号:
    2234390
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Applications of Photofunctional Atomic Layer Materials Synthesized by Solid-State Reactions for Light Energy Conversion Systems
固态反应合成的光功能原子层材料在光能转换系统中的应用
  • 批准号:
    23H01808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了