Regularität von Lösungen quasilinearer subelliptischer Gleichungen mit Nichtstandard-Wachstum in der Heisenberg-Gruppe; Die singuläre Menge von Minima konvexer Varationsprobleme höherer Ordnung und Randregularität von Lösungen elliptischer Systeme

海森堡群中非标准增长拟线性次椭圆方程解的正则性

基本信息

  • 批准号:
    32644055
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2006
  • 资助国家:
    德国
  • 起止时间:
    2005-12-31 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

Für schwache Lösungen subelliptischer Gleichungen in der Heisenberg-Gruppe, deren Koeffizienten einer superlinearen Nichtstandard-Wachstumsbedingung genügen, soll unter natürlichen Restriktionen an das Wachstum der Koeffizienten die lokale Regularität, d.h. die Glattheit der Lösungen, gezeigt werden. Die Einschränkungen werden dabei in Abhängigkeit von der Dimension an das Wachstum der Koeffizienten von oben zu stellen sein (nach unten wird der Einfachheit halber lineares Wachstum der Koeffizienten angenommen). Der erste und wichtigste Schritt wird dabei der Beweis von a priori Abschätzungen sein, welche die Lipschitz-Stetigkeit, d.h. die lokale Beschränktheit, des vollen euklidischen Gradienten der Lösungen garantiert.Für konvexe bzw. quasikonvexe Variationsprobleme höherer Ordnung mit p-Wachstum, p > 2, soll beginnend mit einer partiellen Regularitätstheorie für lokale Minima quasikonvexer Integrale, über das Studium von w-Minima autonomer quasikonvexer Integrale bis hin zur Analyse der singulären Menge von lokalen Minima von konvexen und quasikonvexen Variationsintegralen, eine vollständige Regularitätstheorie entwickelt werden. Schließlich sollen schwache Lösungen des Dirichlet-Problems elliptischer Systeme hinsichtlich ihres Randregularitätsverhaltens analysiert werden.
Gleichungen在海森伯格 - 格鲁佩(Heisenberg-Gruppe)中的次线性,Nichtstandard-watchstums床上用品的超线性,因此Wachstum仅限于约束。 Abhängigkeit和Wachstum的尺寸,Wachstum皮肤病学和Wachstum皮肤病学的模具是,第一步是从世界的角度保护世界。第一步是从世界的角度保护世界。第一步是从世界的角度保护世界。第一步是从世界的角度保护世界。 Ordnung mit p-Wachstum, p > 2, soll beginnend mit einer partiellen Regularitätstheorie für lokale Minima quasikonvexer Integrale, über das Studium v​​on w-Minima autonomer quasikonvexer Integrale bis hin zur Analyse der singulären Menge von lokalen Minima von konvexen und Quasikonvexen variationsIntegralen,einevollständigeSuropartätsthorieentwickelt Werden。 SchließlichSollenSchwacheLösungendes dirichlet-Problems Elliptischer Systeme Hinsichtlich IhresrandregularitätsverhaltsverhaltensAnallyzer werden。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case
  • DOI:
    10.1007/s00229-007-0100-8
  • 发表时间:
    2007-06
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Lisa Beck
  • 通讯作者:
    Lisa Beck
Partial regularity results for subelliptic systems in the Heisenberg group
Partial regularity of strong local minimizers of quasiconvex integrals with (p, q)-growth
具有 (p, q) 增长的拟凸积分的强局部极小值的偏正则性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Frank Duzaar其他文献

Professor Dr. Frank Duzaar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Frank Duzaar', 18)}}的其他基金

Elliptische und parabolische Hindernis-Probleme mit irregulären Hindernissen
不规则障碍物的椭圆形和抛物线形障碍物问题
  • 批准号:
    179857889
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

CUL7基因突变导致Von Hippel Lindau蛋白细胞内蓄积增多致3-M综合征软骨细胞分化异常的分子机制研究
  • 批准号:
    82302106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非交换Weyl-von Neumann定理及其弱形式在von Neumann代数中的拓展
  • 批准号:
    12271074
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
关于算子代数上非交换Weyl-von Neumann定理的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
有限von Neumann代数的相对顺从性
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
算子代数中齐性空间的微分几何结构
  • 批准号:
    11901453
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wässrige Lösungen von Blends aus Biopolymeren unterschiedlicher Molekülarchitektur: Experimentelle Bestimmung der ternären Phasendiagramme und ihre Modellierung
不同分子结构的生物聚合物混合物的水溶液:三元相图及其建模的实验测定
  • 批准号:
    152966921
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Untersuchung von universalen Konfidenzmengen für Lösungen von Entscheidungsproblemen und Anwendungen in der stochastischen Optimierung sowie der mathematischen Statistik
研究决策问题解决方案的通用置信集及其在随机优化和数理统计中的应用
  • 批准号:
    129166907
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Separation der Fundamentallösungen elliptischer Differentialgleichungen mit Hilfe von Quadraturverfahren
使用求积法分离椭圆微分方程的基本解
  • 批准号:
    161539750
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimierung der Reaktionsbedingungen in mizellaren Lösungen und Mikroemulsionen auf der Basis der Vorhersage von Verteilungskoeffizienten
基于分配系数预测的胶束溶液和微乳液反应条件优化
  • 批准号:
    63567471
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Vermessung von Profilablösungen mittels verbesserter Particle Tracking Velocimetry (PTV) durch Verwendung von farbigen Tracerpartikeln und weiterentwickelten Prädiktionsmethoden
通过使用彩色示踪粒子和进一步开发的预测方法,使用改进的粒子跟踪测速 (PTV) 来测量轮廓分离
  • 批准号:
    21254181
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了