Optimization of parameter settings by projection based quality parameters in industrial computed tomography
工业计算机断层扫描中基于投影的质量参数优化参数设置
基本信息
- 批准号:334015749
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New technologies in manufacturing (such as additive manufacturing) enable the production of parts with high requirements towards accuracy as well as a high functional integration. These parts often contain inner structures and hidden features that cannot be accessed with conventional tactile coordinate metrology. Computed tomography (CT) thus is getting more and more important, because it is the only method that can measure inner structures non-destructively. Computed tomography offers a high density of measurement points spread over the whole inner and outer surface geometry of the part, making a three-dimensional volumetric model of the measured component possible. Computed tomography for dimensional metrology is a complex and indirect measurement procedure, whose results depend on a variety of influencing factors. Starting from the single projection towards data processing of the measured data, for each measuring task an individual set of parameters has to be chosen accordingly. The quality and reliability of the measurement, expressed in measurement uncertainty, depends on hard- and software as well as user-set scan parameters. Scan parameters, such as current, tube voltage or exposure time, can influence the measurement results. Especially in micro computed tomography this influence is significant. However, in most cases the selection of scan parameters is still based on the experience of the CT user, while due to the complex measurement process the influence of the parameter choice on the measurement result cannot be quantified. Thus, in the proposed project, a methodology regarding an automated setting of scan parameters is developed, which aims at a reduced task-specific measurement uncertainty. First, the influence of image quality parameters of the individual projections on the reconstructed volume and respectively on the measurement deviation is evaluated and quantitatively described in a model. For the measurements, test bodies that show similarity to real industrial components are used. Of special interest hereby is the difference between measurement error regarding dimensions and form of geometric features. Based on the model, the required image quality of the projection then can be derived from the model and an individual set of optimal image quality parameters for each measuring tasks can be determined. The aim is to develop and validate a methodology for the automated optimization of scan parameters.
制造业中的新技术(如增材制造)能够生产对精度和高功能集成度有高要求的零件。这些部件通常包含无法用传统触觉坐标测量法访问的内部结构和隐藏特征。因此,计算机断层扫描(CT)变得越来越重要,因为它是唯一可以无损测量内部结构的方法。计算机断层扫描提供了分布在零件整个内表面和外表面几何形状上的高密度测量点,使被测部件的三维体积模型成为可能。用于尺寸计量的计算机断层扫描是一种复杂的间接测量过程,其结果取决于各种影响因素。从测量数据的数据处理的单一投影开始,对于每个测量任务,必须相应地选择单独的参数集。测量的质量和可靠性(以测量不确定度表示)取决于硬件和软件以及用户设置的扫描参数。 扫描参数,如电流、管电压或曝光时间,会影响测量结果。特别是在微型计算机断层扫描,这种影响是显着的。然而,在大多数情况下,扫描参数的选择仍然是基于CT用户的经验,而由于复杂的测量过程,参数选择对测量结果的影响无法量化。因此,在所提出的项目中,开发了一种关于自动设置扫描参数的方法,其目的是减少特定于任务的测量不确定性。首先,在模型中评估并定量描述各个投影的图像质量参数对重建体积和测量偏差的影响。为了测量,使用显示出与真实的工业部件相似的测试体。因此,特别感兴趣的是关于几何特征的尺寸和形式的测量误差之间的差异。基于该模型,然后可以从该模型导出投影的所需图像质量,并且可以确定用于每个测量任务的单独的一组最佳图像质量参数。目的是开发和验证一种自动优化扫描参数的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Gisela Lanza其他文献
Professorin Dr.-Ing. Gisela Lanza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr.-Ing. Gisela Lanza', 18)}}的其他基金
Migration planning of global production networks – methodological support for the determination of robust migration paths and risk-efficient enablers of change
全球生产网络的迁移规划——为确定稳健的迁移路径和风险有效的变革推动因素提供方法支持
- 批准号:
418891325 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Adaptive Quality Control in Tolerancing and Production Strategies for the Economic Production of High Precision Products
高精度产品经济生产的公差和生产策略中的自适应质量控制
- 批准号:
431571877 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Transparency in Global Production Networks: Improving Disruption Management by Increased Information Exchange
全球生产网络的透明度:通过增加信息交换改善中断管理
- 批准号:
432466774 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Planning method for a changeable line balancing of synchronized flow assembly systems
同步流装配系统可变线平衡规划方法
- 批准号:
416818066 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Methodology for multiple response optimization of lean and resource efficient manufacturing systems
精益和资源高效制造系统的多重响应优化方法
- 批准号:
386445566 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Methodical decision support for dynamic allocation planning of product variants in global manufacturing networks
为全球制造网络中产品变体的动态分配规划提供有条理的决策支持
- 批准号:
408367989 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Methodical decision support for mid-term order planning in global production networks for multi-variant series production under uncertainty of customer order configurations
在客户订单配置不确定的情况下,为多品种系列生产的全球生产网络中的中期订单计划提供有条理的决策支持
- 批准号:
393876418 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Changeability of global production networks: an approach for multi-objective decision making
全球生产网络的可变性:多目标决策方法
- 批准号:
278666874 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Performance measurement system for robustness improvements in paced production lines
用于提高生产线稳健性的性能测量系统
- 批准号:
292119530 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Methodology for assessing the ability to control global value added networks using perfor-mance indicator-based modeling and in consideration of real decision-making structures by means of the agent-based simulation
使用基于绩效指标的建模并通过基于代理的模拟考虑实际决策结构来评估控制全球增值网络的能力的方法
- 批准号:
262424098 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks
ERI:电力网络分布式优化中的智能建模和参数选择
- 批准号:
2347120 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Parameter identification with optimal experimental design for engineering biology
工程生物学优化实验设计的参数识别
- 批准号:
EP/Y00342X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Neuromodulators constrain the activity of neurons and neuronal networks by restricting their parameter space
神经调节器通过限制神经元和神经元网络的参数空间来限制其活动
- 批准号:
2320895 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Epidemiological modelling of behavioural impact on Mpox mitigation strategies
行为对 Mpox 缓解策略影响的流行病学模型
- 批准号:
481271 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Development of performance parameter optimization tools for automatic tuning
自动调优性能参数优化工具开发
- 批准号:
23K11126 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
- 批准号:
10794448 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Smart Cuff: Multi-Parameter Hemodynamic Monitoring via a Single Convenient Device
智能袖带:通过单个便捷设备进行多参数血流动力学监测
- 批准号:
10583061 - 财政年份:2023
- 资助金额:
-- - 项目类别: