Dynamic Redundancy for Many-core Systems

多核系统的动态冗余

基本信息

项目摘要

Safety-critical systems require redundancy for fault-detection and fault-tolerance. Depending on the application mode or execution state, different types of redundancy are required: Dual Modular Redundancy (DMR) for fail-safe modes and Triple Modular Redundancy (TMR) or even higher redundancy for fail-operational modes. Future safety-critical systems will feature mode switching between application of different criticality and fault-tolerance demands requiring more dynamicity in redundancy modes. An example in automotive may be switching from parking assistant to piloted driving with much higher safety demands, but executed on the same embedded multi-core. This project investigates the dynamic switching between redundancy modes depending on external causes. We call this dynamic redundancy. We investigate dynamic redundancy switching between hardware modes (no redundancy, DMR, and TMR), same for software modes and combinations. Our target hardware platforms are tile-based Multi-Processor Systems on Chips (MPSoCs) that are enhanced by fault-tolerant hardware to reach an Adaptively Redundant Processor. Dynamic redundancy switching is controlled by a Redundancy Management Unit per tile and a Network-on-Chip (NoC) managed redundancy enhancement that enables scalable designs by introducing NoC voting capabilities.On the software side we start with an actor-based data-flow execution model, which is able to execute tasks, called dataflow actors, depending on input data availability in parallel. Such a model is common in current parallel programming environments as e.g. the task model in OpenMP. We enhance the dataflow actor model to run actors redundantly to reach DMR or TMR modes. Dataflow actors can be easily re-executed in case of failure because of their freedom from side effects. We investigate dynamic redundancy switching between software and hardware modes as well as timing behavior and real-time schedulability in case of failures.To perform the evaluations, we develop a cross-layer system architecture, called Adaptively Redundant Many-core Architecture (ARMA), incorporating dynamic redundancy on software and hardware levels. ARMA is intended to combine high performance parallel execution with safety mechanisms like fault tolerance and timing predictability to cover the different requirements of a broad range of embedded domains, like automotive, avionic, and space. The dynamic redundancy switching concept shall be proven on a FPGA-based ARMA multi-core processor, yet the insights gained and techniques developed in this project shall be applicable to future MPSoC architectures in general.
安全关键型系统需要冗余来进行故障检测和容错。根据应用程序模式或执行状态,需要不同类型的冗余:用于故障安全模式的双模块冗余(DMR)和用于故障操作模式的三模块冗余(TMR)甚至更高的冗余。未来的安全关键系统将在不同关键性和容错需求的应用之间进行模式切换,这要求冗余模式具有更大的动态性。汽车领域的一个例子是从停车辅助切换到安全性要求更高的驾驶员驾驶,但在同一个嵌入式多核上执行。本项目研究冗余模式之间的动态切换取决于外部原因。我们称之为动态冗余。我们研究了硬件模式(无冗余,DMR和TMR)之间的动态冗余切换,软件模式和组合也是如此。我们的目标硬件平台是基于瓦片的多处理器片上系统(MPSoC),通过容错硬件增强,以达到自适应冗余处理器。动态冗余切换由每个瓦片的冗余管理单元和片上网络(NoC)管理的冗余增强来控制,该增强通过引入NoC投票功能来实现可扩展的设计。在软件方面,我们从基于参与者的数据流执行模型开始,该模型能够根据输入数据的可用性并行执行任务,称为低参与者。这样的模型在当前并行编程环境中是常见的,例如在OpenMP中的任务模型。我们增强了低层演员模型,以冗余方式运行演员,从而达到DMR或TMR模式。数据流参与者可以在失败的情况下轻松重新执行,因为它们没有副作用。我们研究了软件和硬件模式之间的动态冗余切换以及故障情况下的时序行为和实时可扩展性,为了进行评估,我们开发了一个跨层的系统架构,称为自适应冗余众核架构(阿尔马),将动态冗余的软件和硬件级别。阿尔马旨在将联合收割机高性能并行执行与容错和时序可预测性等安全机制相结合,以满足汽车、航空电子和空间等广泛嵌入式领域的不同需求。动态冗余切换概念将在基于FPGA的阿尔马多核处理器上得到验证,但在本项目中获得的见解和开发的技术将适用于未来的MPSoC架构。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Adaptive Lockstep Architecture for Mixed-Criticality Systems
混合关键系统的自适应锁步架构
A Functional Programming Model for Embedded Dataflow Applications
嵌入式数据流应用程序的函数式编程模型
A Network on Chip Adapter for Real-Time and Safety-Critical Applications
适用于实时和安全关键型应用的片上网络适配器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Jürgen Becker其他文献

Professor Dr.-Ing. Jürgen Becker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Jürgen Becker', 18)}}的其他基金

PARFAIT II: Power-aware AmbipolaR Fpga ArchITecture II
PARFAIT II:功率感知 AmbipolaR Fpga 架构 II
  • 批准号:
    326384402
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Parallel Hardware Architectures for Computational Intensive and Secure Applications
适用于计算密集型和安全应用的并行硬件架构
  • 批准号:
    211196172
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Beschleunigung bildgebender Verfahren durch Einsatz rekonfigurierbarer Hardware am Beispiel der 3D Ultraschall-Computertomographie
以 3D 超声计算机断层扫描为例,通过使用可重新配置的硬件来加速成像过程
  • 批准号:
    185077618
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
KArlsruhe's Hypermorphic Reconfigurable-Instruction-Set Multi-grained-Array (Kahrisma) Architecture
KArlsruhe 的超形态可重配置指令集多粒度阵列 (Kahrisma) 架构
  • 批准号:
    113684250
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
DodOrg - Digitaler on-demand Rechnerorganismus für Echtzeitsysteme: Plastizität, Dynamik und Stabilität
DodOrg - 用于实时系统的数字按需计算有机体:可塑性、动态性和稳定性
  • 批准号:
    65103786
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Digital On-Demand Computing Organism: Stability and Robustness
数字按需计算有机体:稳定性和鲁棒性
  • 批准号:
    5453594
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Development and synthesis of an adaptive multi-grain reconfigurable hardware architecture for dynamical function patterns
用于动态功能模式的自适应多晶粒可重构硬件架构的开发和综合
  • 批准号:
    5408844
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Systematic analysis of mitochondrial carrier functional redundancy using complex genetic interaction analysis
使用复杂的遗传相互作用分析对线粒体载体功能冗余进行系统分析
  • 批准号:
    495442
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genomic imprinting and the epigenetic control of genome function: regulation, redundancy and resilience
基因组印记和基因组功能的表观遗传控制:调节、冗余和恢复力
  • 批准号:
    MR/X018407/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
How constrained is evolution? The importance of genetic redundancy in local adaptation
进化受到多大的限制?
  • 批准号:
    RGPIN-2017-03950
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
RINGS: Deployable End-to-End Resilience for Critical Internet Applications via Modular Redundancy
RINGS:通过模块化冗余为关键互联网应用提供可部署的端到端弹性
  • 批准号:
    2148275
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Regulatory redundancy and its functional consequences in gene networks
基因网络中的监管冗余及其功能后果
  • 批准号:
    RGPIN-2018-06418
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: PlantSynBio: Deciphering the roles of genetic and biochemical redundancy and pathway regulation via refactoring the protective plant cuticle
合作研究:PlantSynBio:通过重构保护性植物角质层破译遗传和生化冗余以及途径调节的作用
  • 批准号:
    2212800
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: PlantSynBio: Deciphering the roles of genetic and biochemical redundancy and pathway regulation via refactoring the protective plant cuticle
合作研究:PlantSynBio:通过重构保护性植物角质层破译遗传和生化冗余以及途径调节的作用
  • 批准号:
    2212801
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: PlantSynBio: Deciphering the roles of genetic and biochemical redundancy and pathway regulation via refactoring the protective plant cuticle
合作研究:PlantSynBio:通过重构保护性植物角质层破译遗传和生化冗余以及途径调节的作用
  • 批准号:
    2212799
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Consideration of Redundancy Effect for Seismic Assessment of Structures in Canada
加拿大结构抗震评估冗余效应的考虑
  • 批准号:
    573522-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Overcoming host Genetic Redundancy and Pathogen Subversion to Define new host-viral Interfaces
克服宿主遗传冗余和病原体颠覆,定义新的宿主-病毒界面
  • 批准号:
    10490430
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了