Digital On-Demand Computing Organism: Stability and Robustness

数字按需计算有机体:稳定性和鲁棒性

基本信息

项目摘要

An intrinsic feature of many biological systems is their capabilities of self-healing, self-adapting, selfconfiguring etc, or short, self-x features. In contrast, today¿s computing systems hardly feature any of these characteristics even though they promise to raise computing to a new level of applicability. Our proposed approach to organic computing is tightly bound to basic self-x mechanisms as found, for example, in a human body. Starting with investigating basic biological mechanisms, we eventually derive a digital, on-demand computing organism representing the three levels, ¿brain¿, `organ¿ and `cell¿. The ¿on-demand¿ characteristic thereby emphasizes its responsiveness to environmental requests/changes as well as to changes resulting from the dynamics of the computing organism itself. Beginning with the brain level, a Software architecture for a robot controller with emphasis an self-x features is proposed. It closely interacts with an organic middleware at the organ level, featuring a decentralized control loop using messengers. At the cell level, a novel adaptive and dynamically reconfigurable hardware architecture is capable to implement the self-x features in an efficient way. In between, a power management system¿s architecture co-ordinates brain level and cell level for ultralow power system efficiency. All levels are supplied with monitoring techniques and architectures as a prerequisite for enabling self-x features. We believe that our comprehensive approach to organic computing will represent the first step towards more adaptive, more power efficient and more flexible future embedded real-time systems. The proposed project is comprised of five research groups and a neurophysiologic expert: Prof. Becker (hardware architectures), Prof. Brinkschulte (middleware), Prof. Henkel (low power), Prof. Karl (monitoring), Prof. Wörn (robotics), and Prof. Brändle (neurophysiologic concepts).
许多生物系统的一个内在特征是它们的自我修复、自我适应、自我配置等能力,或简短的自我x特征。相比之下,今天的S计算系统几乎没有任何这些特征,尽管它们承诺将计算的适用性提高到一个新的水平。我们提出的有机计算方法与基本的自-x机制紧密相连,例如在人体中发现的机制。从研究基本的生物机制开始,我们最终得出了一个数字的、按需计算的有机体,代表了大脑、器官和细胞三个层次。因此,按需特性强调其对环境请求/变化以及由计算有机体本身的动态引起的变化的响应性。从人脑层面出发,提出了一种强调自x特性的机器人控制器的软件体系结构。它与器官级别的有机中间件紧密交互,具有使用信使的分散控制循环。在单元级,一种新颖的自适应和动态可重构的硬件体系结构能够有效地实现self-x特性。在此期间,电源管理系统?S架构协调大脑和细胞级别,以实现超低电源系统效率。所有级别都提供了监控技术和体系结构,作为启用Self-x功能的先决条件。我们相信,我们对有机计算的全面方法将代表着朝着更适应、更节能和更灵活的未来嵌入式实时系统迈出的第一步。拟议的项目由五个研究小组和一名神经生理学专家组成:Becker教授(硬件架构)、Brinkschulte教授(中间件)、Henkel教授(低功率)、Karl教授(监控)、Wörn教授(机器人)和Brndle教授(神经生理学概念)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Jürgen Becker其他文献

Professor Dr.-Ing. Jürgen Becker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Jürgen Becker', 18)}}的其他基金

PARFAIT II: Power-aware AmbipolaR Fpga ArchITecture II
PARFAIT II:功率感知 AmbipolaR Fpga 架构 II
  • 批准号:
    326384402
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamic Redundancy for Many-core Systems
多核系统的动态冗余
  • 批准号:
    337312426
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Parallel Hardware Architectures for Computational Intensive and Secure Applications
适用于计算密集型和安全应用的并行硬件架构
  • 批准号:
    211196172
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Beschleunigung bildgebender Verfahren durch Einsatz rekonfigurierbarer Hardware am Beispiel der 3D Ultraschall-Computertomographie
以 3D 超声计算机断层扫描为例,通过使用可重新配置的硬件来加速成像过程
  • 批准号:
    185077618
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
KArlsruhe's Hypermorphic Reconfigurable-Instruction-Set Multi-grained-Array (Kahrisma) Architecture
KArlsruhe 的超形态可重配置指令集多粒度阵列 (Kahrisma) 架构
  • 批准号:
    113684250
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
DodOrg - Digitaler on-demand Rechnerorganismus für Echtzeitsysteme: Plastizität, Dynamik und Stabilität
DodOrg - 用于实时系统的数字按需计算有机体:可塑性、动态性和稳定性
  • 批准号:
    65103786
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development and synthesis of an adaptive multi-grain reconfigurable hardware architecture for dynamical function patterns
用于动态功能模式的自适应多晶粒可重构硬件架构的开发和综合
  • 批准号:
    5408844
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
“on-demand”释银的双响应性水凝胶体系治疗糖尿病牙周炎的作用机制探究
  • 批准号:
    82301140
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318664
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318662
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318663
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Seismic demand assessment for SMRs considering local geotechnical characteristics and permafrost through large-scale computing and hybrid simulations
通过大规模计算和混合模拟,考虑当地岩土特征和永久冻土的SMR地震需求评估
  • 批准号:
    580472-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
prediction, inference and forecasting of resource supply and demand in large-scale green cloud computing
大规模绿色云计算中资源供需的预测、推理和预测
  • 批准号:
    392170-2010
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
prediction, inference and forecasting of resource supply and demand in large-scale green cloud computing
大规模绿色云计算中资源供需的预测、推理和预测
  • 批准号:
    392170-2010
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Modeling and System Support to Balance the Resource Demand and Supply in High Performance Computing
平衡高性能计算中资源需求和供给的建模和系统支持
  • 批准号:
    0643640
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Modeling and System Support to Balance the Resource Demand and Supply in High Performance Computing
平衡高性能计算中资源需求和供给的建模和系统支持
  • 批准号:
    0405909
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CISE Research Instrumentation: Symmetric Multiprocessor for Research on Parallel Architecture, Compiler, Applications and On-demand Network-Computing Research
CISE 研究仪器:用于并行架构、编译器、应用程序和按需网络计算研究研究的对称多处理器
  • 批准号:
    9617348
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CISE Research Instrumentation: Symmetric Multiprocessor for Research on Parallel Architecture, Compiler, Applications and On-Demand Network-Computing
CISE 研究仪器:用于并行架构、编译器、应用程序和按需网络计算研究的对称多处理器
  • 批准号:
    9617372
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了