Linking affine and Levy-driven models to the microstructure of financial markets

将仿射和征费驱动模型与金融市场的微观结构联系起来

基本信息

项目摘要

By now, models based on affine stochastic processes and Lévy processes have become an indispensable tool in financial modeling. To a large extent, these models are used to describe markets on a 'macroscopic' scale - approximately in the range of hours to several years - which is the scale relevant for risk management, as well as for the pricing and hedging of derivatives. On the other hand, a more recent research strand in mathematical finance has focused on 'market microstructure', that is, the dynamics of transactions in financial markets on a much smaller time-scale, in the order of microseconds to minutes. The relevance of this time-scale is given both by the increasing (and much-debated) role of high-frequency trading and by the observation of market anomalies that can only be explained on the level of this microstructure.The goal of this project is to cross these scales and to link affine and Lévy-driven stochastic processes to models of market microstructure. Affine processes serve as a unifying framework for models that include self-exciting effects, such as Hawkes processes with exponential kernel. In addition, we aim to show that even Non-Markovian models that have been proposed for market microstructure, like Hawkes-processes with power-law kernels or fractional diffusions can be embedded into the affine framework by considering processes on infinite-dimensional state spaces. Finally, we will combine certain affine and Lévy-driven models with an economic equilibrium model of high-frequency-trading, in order to obtain a full picture of all market events (the 'limit order book') on the microscopic scale.
目前,基于仿射随机过程和Lévy过程的模型已经成为金融建模中不可缺少的工具。在很大程度上,这些模型用于描述“宏观”规模的市场-大约在几小时到几年的范围内-这是与风险管理以及衍生品定价和对冲相关的规模。另一方面,数理金融学最近的一个研究方向是“市场微观结构”,即金融市场中交易的动态变化在一个小得多的时间尺度上,从微秒到分钟。这个时间尺度的相关性是由高频交易的日益增长的(和备受争议的)作用和只能在这个微观结构的水平上解释的市场异常的观察给出的。本项目的目标是跨越这些尺度,并将仿射和Lévy驱动的随机过程与市场微观结构模型联系起来。仿射过程作为一个统一的框架模型,包括自激效应,如霍克斯过程与指数核。此外,我们的目标是表明,即使是非马尔可夫模型,已提出的市场微观结构,如霍克斯过程与幂律内核或分数扩散可以嵌入到仿射框架,考虑过程的无限维状态空间。最后,我们将结合联合收割机某些仿射和列维驱动的模型与高频交易的经济均衡模型,以获得微观尺度上所有市场事件(“限价订单簿”)的全貌。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Affine forward variance models
  • DOI:
    10.1007/s00780-019-00392-5
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gatheral, Jim;Keller-Ressel, Martin
  • 通讯作者:
    Keller-Ressel, Martin
Semistatic and sparse variance‐optimal hedging
  • DOI:
    10.1111/mafi.12235
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    P. Di Tella;Martin Haubold;Martin Keller-Ressel
  • 通讯作者:
    P. Di Tella;Martin Haubold;Martin Keller-Ressel
Semi-static variance-optimal hedging in stochastic volatility models with Fourier representation
傅立叶表示的随机波动率模型中的半静态方差最优对冲
  • DOI:
    10.1017/jpr.2019.41
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Di Tella;M. Haubold;M. Keller-Ressel
  • 通讯作者:
    M. Keller-Ressel
A comparison principle between rough and non-rough Heston models—with applications to the volatility surface
粗糙和非粗糙 Heston 模型的比较原理及其在波动率表面上的应用
  • DOI:
    10.1080/14697688.2020.1714702
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    M. Keller-Ressel;A. Majid
  • 通讯作者:
    A. Majid
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Martin Keller-Ressel其他文献

Professor Dr. Martin Keller-Ressel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Martin Keller-Ressel', 18)}}的其他基金

Shapes of the Term Structure of Interest Rates
利率期限结构的形状
  • 批准号:
    539672571
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

随机多重分形的时维谱分布理论及Affine类时频处理技术
  • 批准号:
    60702016
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
无限维李代数的表示及相关课题
  • 批准号:
    10571119
  • 批准年份:
    2005
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
  • 批准号:
    23K12955
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
  • 批准号:
    23K03063
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
  • 批准号:
    567867-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Integrable deformations with twisted quantum affine symmetry
具有扭曲量子仿射对称性的可积分变形
  • 批准号:
    2713401
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
A rational approach to affine quantum algebras
仿射量子代数的理性方法
  • 批准号:
    RGPIN-2022-03298
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Geometry of Conjugacy and K-Theory in Affine Weyl Groups
RUI:仿射外尔群中的共轭几何和 K 理论
  • 批准号:
    2202017
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A rational approach to affine quantum algebras
仿射量子代数的理性方法
  • 批准号:
    DGECR-2022-00440
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Affine and double affine quantum algebras
仿射和双仿射量子代数
  • 批准号:
    RGPIN-2019-04799
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Affine Oriented Frobenius Brauer Categories
量子仿射定向 Frobenius Brauer 类别
  • 批准号:
    575291-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了