Shapes of the Term Structure of Interest Rates

利率期限结构的形状

基本信息

项目摘要

The term structure of interest rates -- summarized in the form of the yield curve or the forward curve -- is one of the most fundamental economic indicators. Its shape encodes important information on the preferences for short- vs. long-term investments, the desire for liquidity and on expectations of central bank decisions and the general economic outlook. It is therefore a natural question -- to be asked of any mathematical model of the term structure -- which shapes of yield curves and forward curves the model is able to reproduce and with which frequency they appear. While this question has been answered earlier and conclusively for one-dimensional affine term structure models, systematic results on the more relevant two-dimensional case have appeared only in the last few years. In a recent break-through, the geometric approach of envelopes has been introduced to completely analyze and classify all possible term structure shapes in the two-dimensional Vasicek model. In this project, we will leverage the method of envelopes to solve the problems of shape classification, state-space segmentation and calculation of long-run frequencies of different shapes in a large number of relevant interest rate models, well beyond the Vasicek model. While the Vasicek model is relatively simple due to its Gaussian nature and linearization of Riccati ODEs, substantial challenges will have to be overcome when extending and adapting the envelope approach to other affine term structure models with and without jumps. Additional challenges appear when non-affine or time-inhomogeneous affine models are considered. Instead of envelopes of famillies of lines, families of one-manifold immersed in the models state space have to be considered. When classifying singular points and self-intersections of the envelope theory of total positivity (pioneered by Samuel Karlin in the 1960ies) will be used.
利率期限结构--以收益率曲线或远期曲线的形式概括--是最基本的经济指标之一。它的形状编码了有关短期投资偏好与长期投资偏好、对流动性的渴望、对央行决定的预期以及总体经济前景的重要信息。因此,这是一个自然的问题--任何期限结构的数学模型都会被问到--该模型能够再现收益率曲线和远期曲线的什么形状,以及它们出现的频率。虽然这个问题在一维仿射期限结构模型中已经得到了较早和肯定的回答,但在更相关的二维情况下,直到最近几年才出现了系统的结果。在最近的一项突破中,引入了包络的几何方法来完全分析和分类二维Vasicek模型中所有可能的期限结构形状。在这个项目中,我们将利用信封的方法来解决大量相关利率模型中的形状分类、状态空间分割和不同形状的长运行频率的计算问题,远远超出了Vasicek模型。虽然Vasicek模型由于其高斯性和Riccati常数的线性化而相对简单,但当将包络方法扩展和调整到其他有或没有跳跃的仿射期限结构模型时,将不得不克服巨大的挑战。当考虑非仿射或时间非齐次仿射模型时,会出现额外的挑战。必须考虑的不是线族的包络,而是沉浸在模型状态空间中的一维流形的族。在对奇点和自交点进行分类时,将使用全正包络理论(由塞缪尔·卡林在20世纪60年代首创)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Martin Keller-Ressel其他文献

Professor Dr. Martin Keller-Ressel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Martin Keller-Ressel', 18)}}的其他基金

Linking affine and Levy-driven models to the microstructure of financial markets
将仿射和征费驱动模型与金融市场的微观结构联系起来
  • 批准号:
    348146459
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

区域碳交易试点的运行机制及其经济影响研究---基于Term-Co2模型
  • 批准号:
    71473242
  • 批准年份:
    2014
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Changes in Stock Ownership Structure and Japanese Management: Empirical study related to long-term employment human resources
股权结构变迁与日本管理:与长期雇佣人力资源相关的实证研究
  • 批准号:
    23K12499
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High-frequency Estimation of Term Structure Models at the Zero Lower Bound
零下界期限结构模型的高频估计
  • 批准号:
    DP220100321
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Evaluation of long-term carbon dynamics of northern forests and their dependencies on environment and forest structure using remote sensing and ground surveys
利用遥感和地面调查评估北方森林的长期碳动态及其对环境和森林结构的依赖性
  • 批准号:
    22H02378
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modeling the term structure in global bond markets in a unified manner and bond investment strategies
全球债券市场期限结构统一建模及债券投资策略
  • 批准号:
    22K01565
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Caveolin-1 contributes to the long-term function and structure of the neurovascular unit after juvenile concussion
Caveolin-1 有助于青少年脑震荡后神经血管单元的长期功能和结构
  • 批准号:
    10452647
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Caveolin-1 contributes to the long-term function and structure of the neurovascular unit after juvenile concussion
Caveolin-1 有助于青少年脑震荡后神经血管单元的长期功能和结构
  • 批准号:
    10670316
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Caveolin-1 contributes to the long-term function and structure of the neurovascular unit after juvenile concussion
Caveolin-1 有助于青少年脑震荡后神经血管单元的长期功能和结构
  • 批准号:
    10299440
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Long - Term Interest Rate under the Monetary Policy of Negative Interest Rate : Analyses of Market Structure and Function
负利率货币政策下的长期利率:市场结构与功能分析
  • 批准号:
    21K01569
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Near Term Quantum Algorithms for Solving the Electronic Structure Problem
解决电子结构问题的近期量子算法
  • 批准号:
    565618-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Term structure models in finance
金融中的期限结构模型
  • 批准号:
    21K01586
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了