Beyond isogeometric and stochastic collocation: maximizing efficiency in stochastic non-linear computational solid mechanics

超越等几何和随机搭配:最大化随机非线性计算固体力学的效率

基本信息

项目摘要

Actual computations or simulations of stochastic non-linear solid mechanics models can be very costly. This project will contribute to a reduction of the computational cost of assembling and solving the governing equations. For the spatial description isogeometric analysis with NURBS bases from CAD is used, which offers high order of convergence and accuracy on a per-unknown (degree of freedom) accounting. In a similar vein, the stochastic description will adaptively choose the basis and multi-element segmentation for a high per-unknown accuracy. Furthermore, the terms in the governing equations have to be computed through numerical integration, sampling at evaluation points . This is a considerable part of the total cost, and “collocation” -- the focus of the previous project phase -- uses the minimum possible number of evaluation points, but can be unstable. In the present phase we want to proceed beyond collocation and achieve stability and fast convergence (i.e. efficiency) with as few as possible evaluation points. To this purpose, a variational framework will be used to understand and analyse the respective computations as numerically perturbed variational terms, resp. in the light of mixed variational formulations. The variational framework allows to directly estimate the stability and accuracy of the computations. This becomes especially important when computing irreversible material models such as plasticity, which have internal phenomenological variables in their descriptions. A further reduction of the number of evaluation points is to be achieved through the use of “Bayesian integration”, which uses ideas from "probabilistic numerics".
随机非线性固体力学模型的实际计算或模拟可能非常昂贵。该项目将有助于降低组装和解决管理方程式的计算成本。对于空间描述,使用了来自CAD的NURBS基础的ISODENEDRITIC分析,该分析提供了高度的融合和准确性(自由度)会计。同样,随机描述将自适应地选择基本和多元素分段,以获得高度不确定的精度。此外,管理方程式中的术语必须通过数值集成,在评估点进行采样来计算。这是总成本的考虑部分,“搭配”(上一个项目阶段的重点)使用了最小可能的评估点数量,但可能是不稳定的。在目前的阶段,我们希望以尽可能少的评估点实现稳定性和快速收敛(即效率)。为此,将使用多种框架来理解和分析各自的计算,以数值扰动的变异项,分别。鉴于混合变异公式。变分框架可以直接估计计算的稳定性和准确性。当计算不可逆的材料模型(例如可塑性)时,这一点尤其重要,这些模型在描述中具有内部现象学变量。通过使用“贝叶斯集成”,将进一步减少评估点的数量,该集成使用“概率数字”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Laura De Lorenzis其他文献

Professorin Dr. Laura De Lorenzis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Laura De Lorenzis', 18)}}的其他基金

Multiscale thermo-mechanical fracture analysis of polycrystalline silicon shells in photovoltaic modules by a combined phasefield – continuum damage approach.
采用相场连续损伤相结合的方法对光伏组件中的多晶硅壳进行多尺度热机械断裂分析。
  • 批准号:
    400853899
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Phase-field computation of brittle fracture: robustness, efficiency, and characterisation of solution non-uniqueness
脆性断裂的相场计算:稳健性、效率和解非唯一性表征
  • 批准号:
    328873018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Piezoelectric 0-0-3 Composites
压电0-0-3复合材料
  • 批准号:
    389409970
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Isogeometric and stochastic collocation methods for nonlinear probabilistic multiscale problems in solid mechanics
固体力学中非线性概率多尺度问题的等几何和随机配置方法
  • 批准号:
    255747201
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

CRII: OAC: Improved Cyberinfrastructure Usage through High-Fidelity Isogeometric Volumetric Spline Model Generation
CRII:OAC:通过高保真等几何体积样条模型生成改进网络基础设施的使用
  • 批准号:
    2245491
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis
使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模
  • 批准号:
    EP/W023202/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
高度個別医療に向けた心臓弁まわりの流体解析手法の構築
开发心脏瓣膜周围的流体分析方法,以实现先进的个性化医疗护理
  • 批准号:
    22K17903
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
  • 批准号:
    22K14142
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了