Structural Models of Volatility

波动性的结构模型

基本信息

项目摘要

The development of multivariate volatility or correlation models has become a rapidly growing branch in finance, both in theory and in the applied fields of portfolio allocation and optimization, portfolio risk evaluation, and asset pricing. This development has been spurred especially by the introduction of multivariate models featuring conditional heteroskedasticity (MGARCH). While conveying insightful information about the underlying volatility dynamics, MGARCH models are, however, limited in the sense that in most studies the underlying model of shock transmissions lacks identification in a strictly structural sense.In this international project we build upon recent advances in identifying macroeconometric structural vector autoregressive models, and develop two alternative ways to identify structural stochastic volatility models of the multivariate GARCH type. We proceed from two perspectives. On the one hand, we study a purely statistical approach that proceeds from the assumption that second order dynamics of speculative returns can be traced back to unique and independent structural shocks. From this assumption, we derive moment conditions that identify the structural MGARCH model. We study the method in a static setting and dynamically, taking into account potential structural shifts. On the other hand, we approach identification by exploiting the information inherent to news analytics data. In a third step, both applicants and their research groups will integrate their insights in applying the two schemes to two major fields of empirical research: oil price shocks and the banking crisis in 2008/2009. On the one hand external information is expected helpful for the economic labeling of statistically identified shocks. On the other hand a systematic comparison of independent and instrumental shocks could add a solid conceptual support for the latter when it comes to the descriptive analysis by means of common impulse responses which, by construction, rely on the assumption of isolated (i.e. independent in the non-Gaussian case) unit shocks. We plan to provide our research via an R framework for the analysis of structural volatility models to other researchers. Based on this, an interactive web application demonstrates the detection, identification and visualization of structural changes in volatility transmissions with real-time data. By developing open source research software, we aim to disseminate our research and open up a new communication channel with the scientific community.
多元波动率或相关性模型的发展已经成为金融学中一个迅速发展的分支,无论是在理论上还是在投资组合配置和优化、投资组合风险评估和资产定价等应用领域。这一发展尤其是由于引入了具有条件异方差性(MG)的多变量模型。在传递关于潜在波动动态的深刻信息的同时,MGREST模型,然而,在大多数研究中,冲击传递的潜在模型缺乏严格结构意义上的识别,在这个国际项目中,我们建立在识别宏观计量经济学结构向量自回归模型的最新进展的基础上,并提出两种不同的方法来识别多变量Gestival类型的结构随机波动率模型。我们从两个角度出发。一方面,我们研究了一个纯粹的统计方法,从假设,投机回报的二阶动态可以追溯到独特的和独立的结构性冲击。从这个假设,我们得到的时刻条件,确定结构MGC 3D模型。我们研究的方法在静态设置和动态,考虑到潜在的结构变化。另一方面,我们通过利用新闻分析数据固有的信息来进行识别。在第三步中,申请人和他们的研究小组将整合他们的见解,将两个方案应用于两个主要的实证研究领域:2008/2009年的石油价格冲击和银行危机。一方面,外部信息预计有助于对统计确定的冲击进行经济标记。另一方面,独立冲击和工具冲击的系统比较可以为后者增加坚实的概念支持,当涉及到通过共同脉冲响应的描述性分析时,通过构造,依赖于孤立的(即在非高斯情况下独立的)单位冲击的假设。 我们计划通过R框架将我们的研究提供给其他研究人员,用于结构性波动模型的分析。在此基础上,一个交互式的Web应用程序演示了检测,识别和可视化的结构变化的波动性传输与实时数据。通过开发开源研究软件,我们的目标是传播我们的研究成果,并开辟与科学界的新沟通渠道。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Helmut Herwartz其他文献

Professor Dr. Helmut Herwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Helmut Herwartz', 18)}}的其他基金

MulTi - Multiple Time Series Analysis in Economics
MulTi - 经济学中的多重时间序列分析
  • 批准号:
    390996990
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research data and software (Scientific Library Services and Information Systems)
Local financial development and economic growth in Vietnam
越南地方金融发展和经济增长
  • 批准号:
    314736701
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Causes and effects of time-dependent inflation uncertainty - measurement, evidence, and policy implications
随时间变化的通货膨胀不确定性的原因和影响——测量、证据和政策影响
  • 批准号:
    157678884
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Lineare und nichtlineare Panelmodelle mit verallgemeinerter Fehlertermstruktur und ihre Anwendung bei der Analyse von Leistungsbilanzsalden
具有广义误差项结构的线性和非线性面板模型及其在经常账户余额分析中的应用
  • 批准号:
    22585369
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Robust structural analysis when theoretical information is scarce
理论信息匮乏时的稳健结构分析
  • 批准号:
    504720211
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the Effects of Land Hydrology, Water Volatility, and Rotation Rate on Clouds, Climate, and Circulation in a Hierarchy of Models
了解模型层次结构中陆地水文、水波动和自转速率对云、气候和环流的影响
  • 批准号:
    2310364
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate Stochastic Volatility Models for High-dimensional and High Frequency Data
高维高频数据的多元随机波动率模型
  • 批准号:
    22K01429
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Facing Fear Gauges: Stochastic Volatility Models and Portfolio Choice under Ambiguity
面对恐惧指标:模糊条件下的随机波动模型和投资组合选择
  • 批准号:
    535625-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Facing Fear Gauges: Stochastic Volatility Models and Portfolio Choice under Ambiguity
面对恐惧指标:模糊条件下的随机波动模型和投资组合选择
  • 批准号:
    535625-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adjusting the volatility prediction models by using quote prices and its applications
利用报价调整波动率预测模型及其应用
  • 批准号:
    19K13735
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Facing Fear Gauges: Stochastic Volatility Models and Portfolio Choice under Ambiguity
面对恐惧指标:模糊条件下的随机波动模型和投资组合选择
  • 批准号:
    535625-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了