Thermally excited Skyrmions: from individual to collective dynamics

热激发斯格明子:从个体到集体动力学

基本信息

项目摘要

In this project we will use a combined theoretical and experimental approach to understand the statics and dynamics of thermally excited skyrmions. We will go beyond currently studied ferromagnetic systems and explore systems with multiple magnetic sublattices that are coupled antiparallelly, including synthetic as well as intrinsic ferrimagnetic and antiferromagnetic skyrmions with complex properties resulting from their multiple sub-lattices.The first step is to ascertain the thermal dynamics of individual skyrmions based on our joint work on ferromagnetic skyrmions and first observations of diffusion in ferrimagnetic and synthetic antiferromagnetic skyrmion systems. With exciting predictions of strongly enhanced diffusive dynamics for low net magnetic moments, this bodes well for diffusion-based non-conventional computing. Thus, we will probe the skyrmion diffusion from the regime of large ferromagnetic moments down to zero net moment where the sub-lattices fully compensate each other. We will vary the net magnetic moment in ferrimagnets by tuning the temperature and in synthetic antiferromagnets by choosing appropriate thicknesses of the layers. In the second step, we will probe the collective dynamics of skyrmion ensembles that can form different phases, such as the hexatic phase and topological phase transitions unique to 2D systems. We start by statistically analysing the skyrmion positions in a sample, which allows us to quantify the potential landscape that the skyrmions feel, including probing predictions of enhanced attempt frequencies for antiferromagnetic skyrmions and the skyrmion interactions that govern the resulting phase transitions. The phases and phase transitions will then be probed by analysing their local orientational order parameter in comparison to numerical simulations. Finally, we will use the unique dynamic tunability of skyrmion sizes and shapes to study the dynamics of the phase formation and phase transition. By abruptly varying the skyrmion size and shape, we can study the time-resolved equilibration process to identify key processes driving phase transitions.We will implement the work using a range of selected experimental magnetic techniques that operate at variable temperature in combinations with variable applied magnetic fields. We will use primarily real-time magnetic microscopy for direct imaging complemented by magnetic scattering techniques. Theoretically we use a unique combination of numerical simulation techniques that allow us to span from the electronic to the mesoscopic scale. From atomistic spin simulations we will ascertain the intrinsic thermal dynamics of antiferromagnetic skyrmions, which then allows us to extract realistic parameters to model experimentally accessible skyrmion sizes using micromagnetic approaches, finally enabling molecular dynamics simulations of as large ensembles of skyrmions as necessary to model phases and phase transitions.
在这个项目中,我们将使用理论和实验相结合的方法来理解热激发skyrmions的静态和动态。我们将超越目前研究的铁磁系统,探索具有多个磁子晶格的系统,这些磁子晶格是反铁磁耦合的,包括合成的以及固有的亚铁磁和反铁磁skyrmions,其具有复杂的性质,第一步是根据我们对铁磁skyrmions的联合工作和亚铁磁和铁磁中扩散的首次观察,确定单个skyrmions的热动力学。合成反铁磁Skyrmion系统。随着令人兴奋的预测,强烈增强的扩散动力学低净磁矩,这预示着良好的扩散为基础的非传统计算。因此,我们将探讨skyrmion扩散从制度的大铁磁矩下降到零净矩的子晶格完全相互补偿。我们将通过调节温度来改变亚铁磁体的净磁矩,通过选择适当的层厚度来改变合成反铁磁体的净磁矩。在第二步中,我们将探索可以形成不同相的skyrmion系综的集体动力学,例如2D系统特有的六角相和拓扑相变。我们首先统计分析样品中的skyrmion位置,这使我们能够量化skyrmion感觉到的潜在景观,包括探测预测反铁磁skyrmion的增强尝试频率和管理由此产生的相变的skyrmion相互作用。相和相变,然后将探讨通过分析它们的本地取向序参数相比,数值模拟。最后,我们将利用skyrmion尺寸和形状的独特动态可调性来研究相形成和相变的动力学。通过突然改变skyrmion的大小和形状,我们可以研究时间分辨的平衡过程,以确定驱动相变的关键过程。我们将使用一系列选定的实验磁性技术来实现这项工作,这些技术在可变温度下与可变的外加磁场相结合。我们将主要使用实时磁显微镜直接成像辅以磁散射技术。理论上,我们使用一个独特的数值模拟技术的组合,使我们能够跨越从电子到介观尺度。从原子自旋模拟,我们将确定反铁磁skyrmion的内在热动力学,然后使我们能够提取现实的参数来模拟实验上可访问的skyrmion大小使用微磁方法,最后使分子动力学模拟的大合奏skyrmion作为必要的模型相位和相变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Mathias Kläui其他文献

Professor Dr. Mathias Kläui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Mathias Kläui', 18)}}的其他基金

Magnetic field tunable flexible wireless communication device
磁场可调柔性无线通信装置
  • 批准号:
    318612841
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spin currents and domain wall dynamics based on the spin Seebeck effect
基于自旋塞贝克效应的自旋电流和畴壁动力学
  • 批准号:
    198571487
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Magnetism and charge and spin transport in graphene nanostructures
石墨烯纳米结构中的磁性以及电荷和自旋输运
  • 批准号:
    171802943
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Investigation and control of domain walls and their interaction with spin-polarized currents in nanoscale ferromagnets
纳米级铁磁体中畴壁及其与自旋极化电流相互作用的研究和控制
  • 批准号:
    46691129
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Antiferromagnetic spin transport - from Hematite to Orthoferrites
反铁磁自旋输运 - 从赤铁矿到正铁氧体
  • 批准号:
    423441604
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

分子高振动-转动激发态结构中的复杂相互作用
  • 批准号:
    11074204
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

Channeling Excited States Towards New Productive Photochemical Pathways
将激发态引导至新的高效光化学途径
  • 批准号:
    2350308
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Redox and Excited State Properties of Oligothiophene-Bearing Ru(II) Photodrugs
含低聚噻吩 Ru(II) 光药物的氧化还原和激发态性质
  • 批准号:
    2400127
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Chiral Phenomena of Excited States in Spintronics
职业:自旋电子学中激发态的手性现象
  • 批准号:
    2339615
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
EESM: Externally Excited Synchronous Motor
EESM:外励同步电机
  • 批准号:
    10062788
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Unraveling Ultra-High-Energy Cosmic Ray Accelerators by De-excited Gamma-ray
通过去激发伽马射线解开超高能宇宙射线加速器
  • 批准号:
    23KJ1222
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
  • 批准号:
    2246509
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of Long-Range Charge Transfer and Excited State Processes in Biochemical Systems
生化系统中长程电荷转移和激发态过程的研究
  • 批准号:
    10713085
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了