Magnetism and charge and spin transport in graphene nanostructures

石墨烯纳米结构中的磁性以及电荷和自旋输运

基本信息

项目摘要

Graphene is not only a very interesting material for science but also probably one of the most promising candidates for future spintronic and nano-electronic devices. Due to its electronic structure it exhibits the highest charge carrier mobilities ever measured and the low hyperfine interaction as well as the low spin-orbit coupling result in large spin diffusion lengths and spin lifetimes. Based on our recent observation of huge mobilities (100.000 cm²/(Vs)) in turbostratic graphene, we will study the thickness dependence of the properties to reveal the influence of the environment, the dominating scattering and charge transport mechanisms and ascertain the ultimate limit for mobilities in this multilayer-system. The optimized efficient spin injection without tunneling barriers will allow us to obtain large diffusive spin currents and we will ascertain the spin relaxation mechanisms to maximize the spin diffusion lengths and spin accumulation with a view of using spin currents to manipulate magnetisation.The ultimate graphene-based nanostructure are graphene nanoribbons where so-called armchair- and zigzag-edges can be tailored with atomistic structural precision using bottom-up synthesis and single atom transmission electron microscopy-based sculpting as post-patterning. We will study key characteristic charge and spin transport properties, such as the charge carrier mobility, Hall coefficient and spin diffusion length in these atomically perfect structures. In addition to classical transport, we will probe the exciting unconventional properties that have been predicted for these nano-structures: Quantum confinement leading to bandgaps and magnetic defect- or edge-induced states will be studied using electromigrated nano-gap geometries for nanoribbons with different widths and tailored edge geometries to test a variety of partly contradicting theoretical predictions. Furthermore by using specially functionalized nanoribbons that can be lithographically contacted on insulating substrates, the quantum transport over long distances in these effectively 1D structures will be analyzed for the first time.
石墨烯不仅是一种非常有趣的科学材料,而且可能是未来自旋电子学和纳米电子器件最有前途的候选者之一。由于它的电子结构,它表现出了有史以来最高的载流子迁移率,低的超精细相互作用和低的自旋-轨道耦合导致了较长的自旋扩散长度和自旋寿命。基于我们最近观测到的涡流层石墨烯的巨大迁移率(100.000 cm2/(Vs)),我们将研究其性质与厚度的关系,以揭示环境、主要的散射和电荷输运机制的影响,并确定这个多层体系的迁移率的极限。没有隧道势垒的优化的高效自旋注入将使我们能够获得巨大的扩散自旋流,我们将确定自旋弛豫机制,以最大化自旋扩散长度和自旋积累,以期利用自旋流来操纵磁化。最终的基于石墨烯的纳米结构是石墨烯纳米带,其中所谓的扶手椅和之字形边缘可以通过自下而上合成和单原子传输电子显微镜雕刻作为图案化后的原子结构精度进行定制。我们将研究这些原子完美结构中的关键特征电荷和自旋输运性质,如载流子迁移率、霍尔系数和自旋扩散长度。除了经典的输运外,我们还将探索这些纳米结构的令人兴奋的非传统性质:导致带隙和磁缺陷或边缘感应态的量子限制将使用不同宽度的纳米带的电迁移纳米带隙几何结构和定制的边缘几何形状来研究,以测试各种部分矛盾的理论预测。此外,通过使用可以在绝缘衬底上光刻接触的特殊功能纳米带,将首次分析这些有效的一维结构中的长距离量子输运。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Mathias Kläui其他文献

Professor Dr. Mathias Kläui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Mathias Kläui', 18)}}的其他基金

Magnetic field tunable flexible wireless communication device
磁场可调柔性无线通信装置
  • 批准号:
    318612841
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spin currents and domain wall dynamics based on the spin Seebeck effect
基于自旋塞贝克效应的自旋电流和畴壁动力学
  • 批准号:
    198571487
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Investigation and control of domain walls and their interaction with spin-polarized currents in nanoscale ferromagnets
纳米级铁磁体中畴壁及其与自旋极化电流相互作用的研究和控制
  • 批准号:
    46691129
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Antiferromagnetic spin transport - from Hematite to Orthoferrites
反铁磁自旋输运 - 从赤铁矿到正铁氧体
  • 批准号:
    423441604
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thermally excited Skyrmions: from individual to collective dynamics
热激发斯格明子:从个体到集体动力学
  • 批准号:
    403502522
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于电荷泄漏与静电击穿效应的摩擦纳米发电机及电荷转移机制研 究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
染色质重塑因子CHD7在胚胎发育神经胚形成阶段的功能研究
  • 批准号:
    81974229
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
  • 批准号:
    2325147
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
  • 批准号:
    2322706
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Interplay of sliding ferroelectricity, spin and charge orderings in layered quantum materials
职业:层状量子材料中滑动铁电性、自旋和电荷排序的相互作用
  • 批准号:
    2237761
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Controlling the spin and charge of color centers in diamond under cryogenic conditions
博士后奖学金:MPS-Ascend:在低温条件下控制钻石色心的自旋和电荷
  • 批准号:
    2316693
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Investigation of spin-charge interconversion phenomena and realization of semiconductor-based spin logic devices
自旋电荷相互转换现象的研究和基于半导体的自旋逻辑器件的实现
  • 批准号:
    23KF0150
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Structural Basis of Coupling and Dynamics in K+ Channels
K 通道耦合和动力学的结构基础
  • 批准号:
    10682241
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Evaluation and application of charge to spin conversion in topological crystalline insulators
拓扑晶体绝缘体中电荷自旋转换的评价及应用
  • 批准号:
    22KJ1719
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
MuSR and multi-probe studies of spin-charge interplays in emergent quantum phenomena
涌现量子现象中自旋电荷相互作用的 MuSR 和多探针研究
  • 批准号:
    2104661
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI
将临床组织微观结构成像作为大口径 3T MRI 的诊断工具
  • 批准号:
    10640750
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Competing charge, spin, and molecular lattice interactions lead to quantum glass phases in strongly correlated pi-electron systems
竞争性电荷、自旋和分子晶格相互作用导致强相关π电子系统中的量子玻璃相
  • 批准号:
    23H01114
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了