Semantic and Local Computer Vision based on Color/Depth Cameras in Robotics (SeLaVi)

机器人技术中基于彩色/深度相机的语义和本地计算机视觉 (SeLaVi)

基本信息

项目摘要

For modern robots, recognizing objects in their environment is a key skill that enables useful and flexible actions. For this purpose, usually one or more camera images of the scene are evaluated and an internal representation of the environment for the robot is built. However, image-based object recognition is confronted with some difficulties: on the one hand, geometrically simple and slightly textured objects, as they occur in many applications, are barely recognized. On the other hand, (partially) hidden objects in the scene are perceived worse or not at all. In addition, the sensory information usually describes only the geometry and location of the individual objects but not their semantic function or relationships with each other (e.g., "A is on B"). By contrast, perception as a long-term goal should "understand" the environment so that the various objects of a complex scene can be meaningfully manipulated by means of robots. In addition, few local views on the scene should be sufficient to create the most complete global environmental representation possible.The proposed research project "SeLaVi" develops and examines new concepts for image-based understanding of a scene. As a new and unique basic approach serve geometric models, which represent the objects by few surface patches (Boundary Representations, BReps) and which are generated from one or more depth images. This ensures a significantly higher storage and computational efficiency of the method than is possible with the common point clouds or triangular net-works. Based on the BRep and on additional color information from the scene, the objects of an object database are recognized. The recognition of the static objects should work with few local views on the scene and be as robust as possible against other moving objects (for example humans). The world model created in this way is then extended by semantic relations between the objects in order to enable manipulation by a robot arm. In addition, the semi-automatic generation of the object database by the user is considered. The potential fields of application range from autonomous ser-vice robots, programming-to-programming and human/robot cooperation, to industrial automation (e.g. handle-in-the-box).
对于现代机器人来说,识别环境中的物体是一项关键技能,可以实现有用和灵活的行动。为此,通常评估场景的一个或多个相机图像,并构建机器人环境的内部表示。然而,基于图像的目标识别面临着一些困难:一方面,几何简单和轻微纹理的对象,因为它们发生在许多应用中,几乎没有识别。另一方面,场景中(部分)隐藏的对象被感知得更差或根本不被感知。此外,感官信息通常仅描述各个对象的几何形状和位置,而不描述它们的语义功能或彼此之间的关系(例如,“A在B上”)。相比之下,感知作为一个长期目标,应该“理解”环境,以便通过机器人有意义地操纵复杂场景中的各种物体。此外,现场的几个局部视图应足以创建最完整的全球环境representations.The拟议的研究项目“SeLaVi”开发和研究新的概念,以图像为基础的理解场景。作为一种新的和独特的基本方法服务几何模型,它表示的对象由几个表面补丁(边界表示,BREPS),并从一个或多个深度图像生成。这确保了该方法的存储和计算效率显著高于使用公共点云或三角形网络的可能性。基于BRep和来自场景的附加颜色信息,识别对象数据库的对象。静态对象的识别应该在场景上具有很少的局部视图的情况下工作,并且对于其他移动对象(例如人类)尽可能鲁棒。以这种方式创建的世界模型,然后通过对象之间的语义关系进行扩展,以便能够通过机器人手臂进行操作。此外,考虑由用户半自动生成对象数据库。潜在的应用领域从自主服务机器人、编程到编程和人/机器人合作,到工业自动化(例如,盒子中的机器人)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Dominik Henrich其他文献

Professor Dr. Dominik Henrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Dominik Henrich', 18)}}的其他基金

Flexible human-robot cooperation with shared task representation (FlexCobot)
具有共享任务表示的灵活人机合作 (FlexCobot)
  • 批准号:
    397804710
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Verbal instructing of sensor-based robots (VerbBot)
基于传感器的机器人的口头指令(VerbBot)
  • 批准号:
    320825892
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Online CAD reconstruction with hand-held depth cameras (HandCAD-2)
使用手持式深度相机进行在线 CAD 重建 (HandCAD-2)
  • 批准号:
    270133832
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Intuitive programming of robot manipulators (INTROP)
机器人操纵器的直观编程 (INTROP)
  • 批准号:
    250579273
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Sicherheitsstrategien für die Mensch/Roboter-Kooperation und -Koexistenz (SIMERO-2)
人/机器人合作与共存的安全策略 (SIMERO-2)
  • 批准号:
    5451027
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Robot-based manipulation of deformable linear objects
基于机器人的可变形线性物体的操纵
  • 批准号:
    5300378
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Robotergestützte Navigation zum Fräsen an der lateralen Schädelbasis
机器人辅助导航在侧颅底铣削
  • 批准号:
    5347988
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mutual intention recognition for human-robot cooperation
人机合作的相互意图识别
  • 批准号:
    513159450
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Flexible, automated production of ceramic short fiber composite components (FlexFiber)
灵活、自动化生产陶瓷短纤维复合材料部件 (FlexFiber)
  • 批准号:
    518255159
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Crowdsourcing-based Virtual Commissioning of Dynamic Human-Robot Teams (CroViCo)
基于众包的动态人机团队虚拟调试 (CroViCo)
  • 批准号:
    528942620
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
  • 批准号:
    81601936
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computer vision to help enforce social distancing & predict local virus hotspots
计算机视觉有助于加强社交距离
  • 批准号:
    59704
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
NMR and computer experiments on local hydrogen bonding and fluctuations in super- and subcritical water-organic mixtures
超临界和亚临界水-有机混合物中局部氢键和波动的核磁共振和计算机实验
  • 批准号:
    17K05754
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High Performance Computing through Local and Cloud-Based Computer Clusters
通过本地和基于云的计算机集群进行高性能计算
  • 批准号:
    513755-2017
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Building Multi-level Alignment in Local Computer Science for All Implementations for Sustainability
为所有可持续发展的实施建立本地计算机科学的多层次协调
  • 批准号:
    1738675
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Small-time local reachability of nonlinear systems using computer algebra
使用计算机代数的非线性系统小时局部可达性
  • 批准号:
    496114-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
CS10K:CS1C@OC-Building a Local Area Network of Computer Science Teachers
CS10K:CS1C@OC-构建计算机科学教师局域网
  • 批准号:
    1640247
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Efficient, Nonparametric and Local-Minimum-Free Latent Variable Models: With Application to Large-Scale Computer Vision and Genomics
III:小型:协作研究:高效、非参数和局部最小自由潜变量模型:应用于大规模计算机视觉和基因组学
  • 批准号:
    1218282
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Efficient, Nonparametric and Local-Minimum-Free Latent Variable Models: With Application to Large-Scale Computer Vision and Genomics
III:小型:协作研究:高效、非参数和局部最小自由潜变量模型:应用于大规模计算机视觉和基因组学
  • 批准号:
    1218749
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
HCC: Small: From Local Ties to Transnational Connections: The Role of Computer-mediated Communication in Relational Maintenance
HCC:小:从本地联系到跨国联系:计算机介导的沟通在关系维护中的作用
  • 批准号:
    0917401
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Determination of local stress and deformation in human skeletal muscles using a combined approach of in vivo experiments with computer simulation.
使用体内实验与计算机模拟相结合的方法确定人体骨骼肌的局部应力和变形。
  • 批准号:
    19700519
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了