An adaptive isogeometric analysis for three-dimensional phase-field modeling of morphological evolution of lipid bilayers in interactions with fluid flow and electric field
流体流动和电场相互作用下脂质双层形态演化三维相场建模的自适应等几何分析
基本信息
- 批准号:405890576
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of electric fields as external stimulus is an effective technique for engineering vesicle behavior in a wide range of biotechnological applications. Electroporation has been used for introducing genes or drugs into cells and cancer treatments. As a powerful cell manipulation method, electric fields have been used in tissue ablation, wound healing, electroformation and electrofusion of giant vesicles. These applications have motivated computational studies on electrohydrodynamics of vesicles in order to gain a better understanding of the variety of membrane responses under the influence of electric and flow fields. The problem becomes even more complicated in case of multicomponent vesicles due to the coupling of the phase separation dynamics with electrohydrodynamics.The main objective of this research proposal is to develop a three-dimensional computational framework to model morphological evolutions of single- and multi-component lipid bilayer membranes interacting simultaneously with fluid flow and electric fields. We will develop a thermodynamically-consistent phase-field model of multicomponent vesicles under the influence of intracellular and extracellular fluids, which couples the phase separation dynamics, budding and fission processes to vesicle hydrodynamics. This model will be further extended to incorporate the details of adsorption/desorption processes at the membrane and the transport of curvature-inducing molecules in the bulk fluid to and from the membrane. We also will extend our phase-field model to vesicle electrohydrodynamics in order to study the combined effect of fluid flows and electric fields on the single/multi-component vesicles. Therefore, we will devise a three-dimensional adaptive isogeometric analysis (IGA) formulation based on Truncated Hierarchical B-splines (THB-splines) with local refinement and coarsening features necessary for computational efficiency. Additionally, THB-splines are piecewise smooth and globally C1-continuous and therefore can straightforwardly treat the high-order multi-physics partial differential equations. The developed model will be exploited to gain a better understanding of hydrodynamics and electrohydrodynamics of single- and multicomponent vesicles, and of the details of endocytosis processes, particularly when inertial effects are not negligible. This research will also give insights to understanding the cell electroporation by identifying the potential sites of pore formation in the membrane since according to recent studies the poration is expected to happen in the areas of high tension. Moreover, our three-dimensional numerical framework makes it possible to capture additional modes of vesicle behavior, which might not have been observed in previous axisymmetric or 2D simulations. Assuredly, a better understanding of vesicle behaviors in different biophysical situations can help to design more efficient biotechnological techniques for cell manipulations.
利用电场作为外部刺激是一种有效的技术来工程囊泡的行为在广泛的生物技术应用。电穿孔已被用于将基因或药物引入细胞和癌症治疗。电场作为一种强大的细胞操作手段,已被应用于组织消融、创面愈合、巨囊泡的电形成和电融合。这些应用推动了囊泡电流体动力学的计算研究,以便更好地理解在电场和流场影响下膜的各种响应。对于多组分囊泡,由于相分离动力学与电流体动力学的耦合,问题变得更加复杂。本研究计划的主要目的是建立一个三维计算框架来模拟单组分和多组分脂质双层膜与流体流动和电场同时相互作用的形态演变。我们将建立一个在细胞内和细胞外流体影响下的多组分囊泡的热力学一致的相场模型,该模型将相分离动力学、出芽和裂变过程与囊泡流体动力学耦合起来。该模型将进一步扩展,以纳入膜上吸附/解吸过程的细节,以及散装流体中曲率诱导分子进出膜的运输。我们还将相场模型扩展到囊泡电流体动力学,以研究流体流动和电场对单组分/多组分囊泡的联合影响。因此,我们将设计一种基于截断层次b样条(thb样条)的三维自适应等几何分析(IGA)公式,该公式具有计算效率所需的局部细化和粗化特征。此外,thb样条是分段光滑和全局c1连续的,因此可以直接处理高阶多物理场偏微分方程。开发的模型将被用于更好地理解单组分和多组分囊泡的流体力学和电流体动力学,以及内吞过程的细节,特别是当惯性效应不可忽略时。这项研究还将通过确定膜上孔隙形成的潜在位置来了解细胞电穿孔,因为根据最近的研究,穿孔预计会发生在高压区域。此外,我们的三维数值框架使捕获囊泡行为的其他模式成为可能,这在以前的轴对称或二维模拟中可能没有观察到。当然,更好地了解囊泡在不同生物物理情况下的行为有助于设计更有效的细胞操作生物技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Timon Rabczuk, Ph.D.其他文献
Professor Dr.-Ing. Timon Rabczuk, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Timon Rabczuk, Ph.D.', 18)}}的其他基金
Research on key issues of fast isogeometric collocation methods for complex models
复杂模型快速等几何配置方法关键问题研究
- 批准号:
392023639 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
A three-dimensional multiscale peridynamics model for Ferroelectric/Multiferroic Tunnel Junctions
铁电/多铁隧道结的三维多尺度近场动力学模型
- 批准号:
286791468 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
A three dimensional multiscale method for modeling fracture in nanocomposites
纳米复合材料断裂建模的三维多尺度方法
- 批准号:
233096124 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Eine MD-XEFM Kopplung zur Simulation von quasi-sprödem Materialversagen
用于模拟准脆性材料失效的 MD-XEFM 耦合
- 批准号:
189569054 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Eine elektro-mechanische XFEM-Formulierung für Vorwärtsprobleme und inverse Probleme
用于正向问题和逆向问题的机电 XFEM 公式
- 批准号:
200895309 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Eine neue netzfreie Methode zur Modellierung von duktilem Materialversagen
一种新的无网格方法来模拟延性材料失效
- 批准号:
172023039 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Ein Mehr-Skalen-Ansatz zur Modellierung quasi-spröden Materialversagens
准脆性材料失效建模的多尺度方法
- 批准号:
152353435 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Robuste FSI-Verfahren für versagende dünne Schalen
针对薄壳失效的稳健 FSI 方法
- 批准号:
158445025 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
高度個別医療に向けた心臓弁まわりの流体解析手法の構築
开发心脏瓣膜周围的流体分析方法,以实现先进的个性化医疗护理
- 批准号:
22K17903 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
On new developments of Isogeometric Analysis (IGA) for highly accurate and efficient fracture mechanics analysis
等几何分析(IGA)的新发展,用于高精度和高效的断裂力学分析
- 批准号:
22K03879 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Local Mesh Refinement for Flow Analysis with Isogeometric Discretization and Topology Change
使用等几何离散化和拓扑变化进行流动分析的局部网格细化
- 批准号:
20K22401 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
ポンプ閉塞機構解明のための境界適合・非適合格子を併用した流体構造連成解析法の開発
开发使用边界一致和非一致网格的流固耦合分析方法来阐明泵堵塞机制
- 批准号:
20K19814 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Aerodynamic Shape Optimization using Adaptive Refinement and Isogeometric Analysis
使用自适应细化和等几何分析进行空气动力学形状优化
- 批准号:
519591-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discontinuous Galerkin Isogeometric Analysis of Hyperbolic PDEs
双曲偏微分方程的不连续伽辽金等几何分析
- 批准号:
552071-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Aerodynamic Shape Optimization using Adaptive Refinement and Isogeometric Analysis
使用自适应细化和等几何分析进行空气动力学形状优化
- 批准号:
519591-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral