Automated measurement of stress scores in video recordings of laboratory mice
自动测量实验室小鼠视频记录中的压力评分
基本信息
- 批准号:408132301
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using laboratory mice for biomedical research requires strict monitoring of animal wellbeing. Especially, close monitoring of stress and pain is a key requirement for any pre-clinical study incorporating laboratory mice. Numerous protocols for mouse stress assessment have been developed including grimace analysis using the mouse grimace scale (MGS) or analysis of behavioral patterns such as burrowing and nesting behavior that all differ strongly between healthy and non-healthy individuals. While these methods are well established and tools such as MGS show a high correlation between visually acquired score and baseline measurements, assessing animal wellbeing with these scales is a time-consuming task. The animals need to be placed into special environments that are monitored using video equipment and the videos are subsequently analyzed manually. Furthermore, to ensure comparability and to reduce inter-rater variability, it is common practice to have the same expert analyze all videos of a trial.The aforementioned requirements and restrictions result in a high workload and planning overhead for the laboratory personnel. Therefore, this project aims at developing novel methods for automated behavioral analysis and assessment of pain and stress in laboratory mice. The developed algorithms will allow continuous, objective, quantitative and reproducible analysis of acquired video data. The primary focus will be on the development of methods supporting existing imaging setups or those being currently developed in parallel research projects, allowing quick deployment of the developed methods into existing lab environments and retrospective analysis of already existing video data.During the first project stage, a method automatically assessing of the mouse grim scale will be developed to allow robust automated analysis of animal grimacing. In the second stage, we aim at developing methods for robust analysis of behavioral experiments with laboratory mice filmed in open environments. These experiments include analyzing the nesting and burrowing behavior of mice, two experimental setups that are also currently being evaluated manually with considerable manual effort. Two other work packages include extending our methods to home cage analysis for continuous assessment and research on novel image-based and automatically detectable markers for data-driven pain assessment. We aim at developing methods that allow continuous real-time assessment of the animal state with minimal required user interaction, resulting in drastically improved response time, work effort, evaluation quantification and an overall contribution to the animals’ wellbeing.The developed methods will be made publicly available as open source software bundle allowing incorporating them into existing imaging setups.
使用实验室小鼠进行生物医学研究需要严格监控动物的健康状况。特别是,密切监测压力和疼痛是任何临床前研究纳入实验室小鼠的关键要求。许多老鼠压力评估方案已经被开发出来,包括使用老鼠鬼脸量表(MGS)进行鬼脸分析,或分析行为模式,如在健康和非健康个体之间存在强烈差异的挖洞和筑巢行为。虽然这些方法已经建立,MGS等工具显示视觉获得的分数与基线测量值之间存在高度相关性,但用这些量表评估动物的健康状况是一项耗时的任务。这些动物需要被放置在特殊的环境中,使用视频设备进行监控,随后对视频进行人工分析。此外,为了确保可比性并减少评分者之间的差异,通常的做法是让同一位专家分析一次试验的所有视频。上述要求和限制导致实验室人员的高工作量和计划开销。因此,本项目旨在开发用于实验室小鼠疼痛和应激的自动行为分析和评估的新方法。开发的算法将允许对获得的视频数据进行连续、客观、定量和可重复的分析。主要重点将放在支持现有成像设置或目前正在并行研究项目中开发的方法的开发上,允许将开发的方法快速部署到现有的实验室环境中,并对已经存在的视频数据进行回顾性分析。在第一个项目阶段,将开发一种自动评估老鼠表情的方法,以允许对动物表情进行强大的自动分析。在第二阶段,我们的目标是开发在开放环境中拍摄的实验室小鼠行为实验的稳健分析方法。这些实验包括分析老鼠的筑巢和挖洞行为,这两个实验设置目前也正在进行人工评估,需要大量的人工努力。其他两个工作包包括将我们的方法扩展到家庭笼分析,用于连续评估和研究新的基于图像的自动检测标记,用于数据驱动的疼痛评估。我们的目标是开发方法,允许持续实时评估动物状态,最小限度地减少用户交互,从而大大改善响应时间,工作努力,评估量化和对动物福祉的整体贡献。开发的方法将作为开源软件包公开提供,允许将它们合并到现有的成像设置中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Dorit Merhof其他文献
Professorin Dr.-Ing. Dorit Merhof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr.-Ing. Dorit Merhof', 18)}}的其他基金
Automated measurement of stress scores in video recordings of laboratory animals
自动测量实验动物视频记录中的压力分数
- 批准号:
441567598 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Units
Novel Deep Learning Approaches for Analyzing Diffusion Imaging Data
用于分析扩散成像数据的新型深度学习方法
- 批准号:
417063796 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
The larval 4D standard brain of Drosophila melanogaster on a single cell level
单细胞水平的黑腹果蝇幼虫4D标准大脑
- 批准号:
266382180 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
ACTIVE - Aachen Center for Biomedical Image Analysis, Visualization and Exploration
ACTIVE - 亚琛生物医学图像分析、可视化和探索中心
- 批准号:
233509121 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Core Facilities
Larvalbrain2.0: A research platform for the larval brain of Drosophila melanogaster
Larvalbrain2.0:黑腹果蝇幼虫大脑研究平台
- 批准号:
441181781 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
More from less: Overcoming Data Scarcity for Deep Learning in Medical Image Computing
少而多:克服医学图像计算中深度学习的数据稀缺性
- 批准号:
455548460 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于太赫兹光谱近场成像技术的应力场测量方法
- 批准号:11572217
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
阵风场中非定常大气湍流对沙粒跃移运动的影响
- 批准号:11102153
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
个性化近场头相关传输函数的测量与快速定制
- 批准号:11104082
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于电子显微镜的一维纳米材料力电学的原位测量系统
- 批准号:50801009
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
“合金标准”下测量误差校正模型及其在体育运动数据中的应用
- 批准号:10801133
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
基于电阻层析成象和电磁流量计融合的两相流检测研究
- 批准号:60772044
- 批准年份:2007
- 资助金额:8.0 万元
- 项目类别:面上项目
基于网络测量的覆盖网络构建算法研究与应用
- 批准号:60672066
- 批准年份:2006
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the Portability of an Automated Coding System of the Two-Step Method of Gender
研究性别两步法自动编码系统的可移植性
- 批准号:
10796807 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Automated measurement of stress scores in video recordings of laboratory animals
自动测量实验动物视频记录中的压力分数
- 批准号:
441567598 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Units
Clinical studies of a bionic pancreas for automated glucose management in cystic fibrosis-related diabetes mellitus
仿生胰腺用于囊性纤维化相关糖尿病自动血糖管理的临床研究
- 批准号:
10177522 - 财政年份:2019
- 资助金额:
-- - 项目类别:
ShEEP Request for Keyence BZ-X800E All-in-One Automated Imaging System
ShEEP 请求 Keyence BZ-X800E 一体化自动化成像系统
- 批准号:
9793454 - 财政年份:2019
- 资助金额:
-- - 项目类别:
SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
- 批准号:
8524443 - 财政年份:2013
- 资助金额:
-- - 项目类别:
SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
- 批准号:
8981814 - 财政年份:2013
- 资助金额:
-- - 项目类别:
SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
- 批准号:
9112029 - 财政年份:2013
- 资助金额:
-- - 项目类别:
SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
- 批准号:
8638993 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Automated retraction for thoracotomy: Improved recovery of respiratory function a
开胸手术自动回缩:改善呼吸功能的恢复
- 批准号:
7746190 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Integrating Automated Mesh Development into the NA-MIC Toolkit
将自动化网格开发集成到 NA-MIC 工具包中
- 批准号:
7452310 - 财政年份:2006
- 资助金额:
-- - 项目类别: