P進コホモロジーにおける整構造の研究
P-进上同调中正则结构的研究
基本信息
- 批准号:16654006
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Exploratory Research
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dworkが1960年代に導入したp進線形微分方程式の解の対数的増大度に関して、昨年度に引き続き、Bruno Chiarellotto氏(パドバ大学)と共同で幾つかの結果を得た。DworkやRobbaらの先行する研究との最大の相違点は、解の対数的増大度のみを考えるのでなく、解空間に対数的増大度による階層を導入して、その性質を調べることにある。また、これは代数曲線上のF-アイソクリスタルの微分構造からp進局所系の整構造であるFrobenius構造が復元できるかという問題としてとらえることが出来る。昨年度の研究で、少なくとも階数2の場合には、解のTaylor係数の対数的増大度からFrobeniusスロープが決定できることが証明できた。今年度の研究では、階数の一般化へ向けた結果を得た。具体的には、局所体(環)上F-アイソクリスタルに対し1.Dworkが提出した問題の定式化---対数的増大度の特殊化予想2.一般・特殊点において、対数的増大層はFrobeniusのスロープ層に層として含まれること3.一般点における対数的増大層とFrobeniusのスロープ層が一致する必要十分条件4.A.GrothendieckとN.KatzによるFrobenius構造の特殊化定理の別証明等を得た。Frobenius方程式を満たすp進単位円盤上の解析関数の対数的増大度の可能性から2が証明される。特殊な形のFrobenius方程式については対数的増大度が決定でき、有界F-アイソクリスタルFrobenius層の分裂定理と合わせて3を得る。また、この精密な評価から、階数2の場合は対数的増大層とFrobeniusのスロープ層は有界の場合を除き一致する。
In the 1960s, Dwork was introduced into the differential equation in the form of generosity, yesterday's introduction, and Bruno Chiarellotto's joint results. Dwork Robba first studies the maximum correlation point, the size of the solution, the size of the solution of the space, the size of the space, and the size of the data. On the algebraic curve of the computer system and the computer algebra, the differential equation is introduced into the department where the system is concerned. The Frobenius system is responsible for the generation of data, and the problem is different. Last year, the number of research, the number of two, the magnanimity of the number of Taylor, the generosity of the number of Frobenius, and the decision of the number of users. In this year's study, the results of the study are generally satisfactory. The definition of the problem raised by the 1.Dwork on the specific situation and local body (s)-the generosity of the number is specialized to think 2. In general, there is a large number of special points, such as the number of Frobenius, the number of dollars, and the number of points. It is necessary to obtain the theorem of specialization of the number of general points such as 4.A.Grothendieck, N.Katz, Frobenius, etc., and so on. The possibility of "magnanimity" in the analysis of the number of numbers on the Frobenius equation. The magnanimity of the special shape Frobenius equation is determined by the bounded F-equation, which determines the splitting theorem of the equation, and the result of the splitting theorem. The numbers of precision, precision, and number 2 are large, Frobenius, bounded, bounded and consistent.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cohomological descent in rigid cohomology
刚性上同调中的上同调下降
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Nobuo Tsuzuki
- 通讯作者:Nobuo Tsuzuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
都築 暢夫其他文献
KedlayaのRobba ring上のφ-加群の理論(slope分解)
Kedlaya Robba 环上的 φ 模理论(斜率分解)
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫 - 通讯作者:
都築 暢夫
有限平坦群スキームの分類とガロア表現の枠付き変形II(Kisinの論文Modularity of 2-adic Barsotti-Tate representationsの解説)
有限平坦群方案的分类和 Galois 表示的框架变体 II(Kisin 论文 Modularity of 2-adic Barsotti-Tate 表示的解释)
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也 - 通讯作者:
山内卓也
Bounds for the dimensions of the p-adic multiple zeta value (L-value) spaces
p 进多 zeta 值(L 值)空间的维数界限
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也;田口 雄一郎;都築暢夫;山内卓也;田口雄一郎;志甫淳;田口雄一郎;都築 暢夫;志甫 淳;田口 雄一郎;木村 俊一;木村 俊一;木村 俊一;木村 俊一;伊藤 浩行;中島 幸喜;木村 俊一;木村 俊一;木村 俊一;都築 暢夫;加藤 文元;志甫 淳;山下 剛 - 通讯作者:
山下 剛
Motives of GL_2 type over totally real fields
GL_2 类型在完全实数域上的动机
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也;田口 雄一郎;都築暢夫;山内卓也;田口雄一郎;志甫淳;田口雄一郎;都築 暢夫;志甫 淳;田口 雄一郎;木村 俊一;木村 俊一;木村 俊一;木村 俊一;伊藤 浩行;中島 幸喜;木村 俊一;木村 俊一;木村 俊一;都築 暢夫;加藤 文元;志甫 淳;山下 剛;中島 幸喜;田口 雄一郎;都築暢夫;田口雄一郎;山下剛;都築暢夫;志甫淳;山内卓也 - 通讯作者:
山内卓也
有限平坦群スキームの分類と枠付き変形環
有限扁平群方案和框架变形环的分类
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也;田口 雄一郎;都築暢夫;山内卓也 - 通讯作者:
山内卓也
都築 暢夫的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('都築 暢夫', 18)}}的其他基金
p進的手法による数論幾何学の新展開
使用 p-adic 方法的算术几何的新进展
- 批准号:
24H00015 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Study of arithmetic gometry by p-adic methods
p-adic方法的算术几何研究
- 批准号:
18H03667 - 财政年份:2018
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
リジッドコホモロジーの論の研究とその数論幾何学への応用
刚性上同调理论及其在算术几何中的应用研究
- 批准号:
12740015 - 财政年份:2000
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
p進線形微分方程式系の研究
p-adic线性微分方程组的研究
- 批准号:
09740027 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
P進微分方程式の研究
P-adic微分方程的研究
- 批准号:
08740027 - 财政年份:1996
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
数論多様体上のp進局所系の研究
算术簇上p进局部系统的研究
- 批准号:
07740031 - 财政年份:1995
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
数論幾何学の研究
算术几何研究
- 批准号:
05230047 - 财政年份:1993
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
相似海外基金
ミラー対称性による齋藤構造における実,整構造の研究
由于镜面对称而研究 Saito 结构中的真实有序结构
- 批准号:
15J02913 - 财政年份:2015
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
streamデータ型に基づく整構造コルーチンの研究
基于流数据类型的良结构协程研究
- 批准号:
57780020 - 财政年份:1982
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)