P進微分方程式の研究

P-adic微分方程的研究

基本信息

  • 批准号:
    08740027
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

正標数(標数p)代数多様体上のp進局所系はoverconvergent F-isocrystalと呼ばれるrigid geometricな意味で標数0へ持ち上げた多様体上のFrobenius構造付きの微分加群の層で表される。当研究では、p進線型微分方程式系の研究を用いて、正標数代数多様体のp進cohomologyの有限性(有限モノドロミ-予想)に関する幾つかの結果を得た。以下、主な結果を表す。代数曲線の場合では、quasi-unipotent overconvergent F-isocrystalと呼ばれるものについては、局所的にFrobeniusの作用に関するslope filtrationと呼ばれるものが一意的に入ることが示せた。(Crewにより、overconvergent F-isocrystalはquasi-unipotentであると予想されている。)この結果から、局所的にはquasi-unipotent overconvergent F-isocrystalのGrothendieck群はoverconvergent etale 〓-▽-moduleで生成されることが解り、L-関数やε-因子等の数論的対象の研究においてl-進理論の場合と同様にBrauer inductionと呼ばれる便利な方法が使えるようになった。F-isocrystalのTate予想は、de Jongによるalterationの理論を用いると、1次元の局所的な場合に完全に帰着されるという結果を得た。この結果と以前得たetale 〓-▽加群の場合のTate型の定理と合わせると、unit-root F-isocrystalに制限すると一般の次元でTate予想が成立する。当該研究を通して、p-進局所系の全体像が少しずつ見えてきた感じがする。
The number of positive tags (number of tags p) algebraic multiplicity is called "overconvergent F-isocrystal" and "rigid geometric" means that the number of tags is 0, which means that the number of tags is 0, and the Frobenius structure on the body is called "differential plus group". When studying the differential equation system of differential equations, we have obtained the results of the study of algebraic multiplets of positive numbers and the finiteness of cohomology. The following is a table of the main results. Algebraic curves are linked to each other, and the local Frobenius function is related to the Frobenius function. The slope filtration function is intended to show the meaning of the word. (Crew girls, overconvergent F-isocrystal girls, quasi-unipotent girls, girls.) The results show that the local quasi-unipotent overconvergent F-isocrystal Grothendieck group overconvergent etale-module generates the mathematical solution, L-number ε-factor and other mathematical theories of mathematical theory. The theories of F-isocrystal, Tate, de Jong and alteration are used in this paper. The results of the results are completely affected by the results of the results. The results show that the theorem of etale-plus group join Tate type is consistent with that of unit-root F-isocrystal, and the general dimension of Tate is tenable. When it is time to study the whole picture of the department of the bureau and the department of the bureau, it is necessary to study the situation.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
都築暢夫: "The overconvergene of mophism of etale 〓-▽-spaces on local field" Compositio Mathematico. 103. 227-239 (1996)
Nobuo Tsuzuki:“局部域上 etale 〓-▽-空间的模态的超收敛”Compositio Mathematico。103. 227-239 (1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
都築暢夫: "The local index and the Swan condector" Compositio Mathematica. (発表予定).
Nobuo Tsuzuki:“本地索引和天鹅指挥”Compositio Mathematica(即将呈现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

都築 暢夫其他文献

KedlayaのRobba ring上のφ-加群の理論(slope分解)
Kedlaya Robba 环上的 φ 模理论(斜率分解)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫
  • 通讯作者:
    都築 暢夫
有限平坦群スキームの分類とガロア表現の枠付き変形II(Kisinの論文Modularity of 2-adic Barsotti-Tate representationsの解説)
有限平坦群方案的分类和 Galois 表示的框架变体 II(Kisin 论文 Modularity of 2-adic Barsotti-Tate 表示的解释)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也
  • 通讯作者:
    山内卓也
Bounds for the dimensions of the p-adic multiple zeta value (L-value) spaces
p 进多 zeta 值(L 值)空间的维数界限
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也;田口 雄一郎;都築暢夫;山内卓也;田口雄一郎;志甫淳;田口雄一郎;都築 暢夫;志甫 淳;田口 雄一郎;木村 俊一;木村 俊一;木村 俊一;木村 俊一;伊藤 浩行;中島 幸喜;木村 俊一;木村 俊一;木村 俊一;都築 暢夫;加藤 文元;志甫 淳;山下 剛
  • 通讯作者:
    山下 剛
Motives of GL_2 type over totally real fields
GL_2 类型在完全实数域上的动机
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也;田口 雄一郎;都築暢夫;山内卓也;田口雄一郎;志甫淳;田口雄一郎;都築 暢夫;志甫 淳;田口 雄一郎;木村 俊一;木村 俊一;木村 俊一;木村 俊一;伊藤 浩行;中島 幸喜;木村 俊一;木村 俊一;木村 俊一;都築 暢夫;加藤 文元;志甫 淳;山下 剛;中島 幸喜;田口 雄一郎;都築暢夫;田口雄一郎;山下剛;都築暢夫;志甫淳;山内卓也
  • 通讯作者:
    山内卓也
有限平坦群スキームの分類と枠付き変形環
有限扁平群方案和框架变形环的分类
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada;木村 俊一;都築 暢夫;山内卓也;田口 雄一郎;都築暢夫;山内卓也
  • 通讯作者:
    山内卓也

都築 暢夫的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('都築 暢夫', 18)}}的其他基金

p進的手法による数論幾何学の新展開
使用 p-adic 方法的算术几何的新进展
  • 批准号:
    24H00015
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Study of arithmetic gometry by p-adic methods
p-adic方法的算术几何研究
  • 批准号:
    18H03667
  • 财政年份:
    2018
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
P進コホモロジーにおける整構造の研究
P-进上同调中正则结构的研究
  • 批准号:
    16654006
  • 财政年份:
    2004
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
リジッドコホモロジーの論の研究とその数論幾何学への応用
刚性上同调理论及其在算术几何中的应用研究
  • 批准号:
    12740015
  • 财政年份:
    2000
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
p進線形微分方程式系の研究
p-adic线性微分方程组的研究
  • 批准号:
    09740027
  • 财政年份:
    1997
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
数論多様体上のp進局所系の研究
算术簇上p进局部系统的研究
  • 批准号:
    07740031
  • 财政年份:
    1995
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
数論幾何学の研究
算术几何研究
  • 批准号:
    05230047
  • 财政年份:
    1993
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas

相似海外基金

CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Continuing Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Standard Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Cohomology theories for algebraic varieties
代数簇的上同调理论
  • 批准号:
    2883661
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Studentship
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
  • 批准号:
    2316646
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
  • 批准号:
    2884658
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Studentship
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
  • 批准号:
    EP/W036320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Research Grant
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
  • 批准号:
    2302475
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Continuing Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
  • 批准号:
    2247334
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了