Inverse Analysis in the Context of Non-local Damage and Plasticity Models at High Strain Rates for the Determination and Investigation of Non-classical Material Parameters

高应变率下非局部损伤和塑性模型背景下的逆分析,用于确定和研究非经典材料参数

基本信息

项目摘要

When components made of ductile materials are subjected to high strain rates they typically exhibit zones of large localized deformation which are caused by softening due to material damage as well as the increase in temperature due to plastic dissipation. Modeling material behavior by strictly local constitutive models is inadequate since in this case the type of the partial differential equation changes and thus existence, uniqueness, and stability cannot be guaranteed.Non-local constitutive models are a suitable remedy for these problems in that the required properties can be preserved.The determination of constitutive parameters requires the underlying set of equations to satisfy the above criteria. If this requirement is not met, any optimization algorithm to determine the constitutive parameters will lead to erroneous or non-convergent results. Thus, the determination of constitutive parameters is only likely to lead to success if the constitutive model guarantees the existence, uniqueness and stability of the solution during the whole process.Beside constitutive parameters for strain rate hardening and temperature softening, non-local models for high strain rates also include parameters for damage and fracture. Further parameters are added through the introduction of non-local equations. These additional parameters are activated only if the deformations are inhomogeneous. Thus, any identification procedure based on classical homogeneous experiments cannot provide information concerning the non-local parameters. Therefore, in the proposal at hand, procedures are intended to be developed and analyzed that allow for the determination of constitutive parameters of non-local models.Experimental data on the high strain rate behavior of an alloy is available to the applicant from past research projects. Additional experiments with various specimens in a Split-Hopkinson pressure bar combined with high speed cameras capable of capturing field data are planned to obtain important information concerning the strain distribution and additional higher strain rate behavior. The whole available dataset is to be used for analysis and determination of non-local constitutive parameters.This approach leads to a non-linear optimization problem with partial differential equations as constraints. These are to be tackled with derivative based optimization methods which can draw on derivatives already present in the constitutive equations.The outcome of the proposal is the creation and the application of a method to determine the parameters of a non-local constitutive model including contributions to computational, theoretical as well as experimental aspects. In consequence, a crucial part in improving component safety at high strain rates is to be expected.
当由延性材料制成的部件承受高应变率时,它们通常表现出大的局部变形区,这是由材料损伤引起的软化以及由于塑性耗散引起的温度升高引起的。用严格的局部本构模型来模拟材料的行为是不够的,因为在这种情况下,偏微分方程的类型发生了变化,因此不能保证存在性、唯一性和稳定性。非局部本构模型是解决这些问题的一种合适的方法,因为它可以保留所需的性质。本构参数的确定需要满足上述准则的基本方程组。如果不满足这一要求,任何确定本构参数的优化算法都会导致错误或不收敛的结果。因此,只有本构模型在整个过程中保证解的存在唯一性和稳定性,本构参数的确定才有可能取得成功。除了应变率硬化和温度软化的本构参数外,高应变率的非局部模型还包括损伤和断裂参数。通过引入非局部方程,进一步增加了参数。这些附加参数只有在变形不均匀时才会被激活。因此,任何基于经典同质实验的识别方法都不能提供有关非局部参数的信息。因此,在手头的建议中,打算开发和分析程序,以确定非局部模型的本构参数。申请人可以从过去的研究项目中获得合金高应变率行为的实验数据。在Split-Hopkinson压力棒中对各种试样进行附加实验,并结合能够捕获现场数据的高速摄像机,以获得有关应变分布和附加高应变率行为的重要信息。整个可用数据集将用于分析和确定非局部本构参数。这种方法导致了一个以偏微分方程为约束的非线性优化问题。这些问题都要用基于导数的优化方法来解决,这种方法可以利用本构方程中已经存在的导数。该提案的结果是创建和应用一种方法来确定非局部本构模型的参数,包括对计算,理论和实验方面的贡献。因此,在高应变率下提高部件安全性的关键部分是可以预期的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Birgit Skrotzki, since 7/2021其他文献

Professorin Dr.-Ing. Birgit Skrotzki, since 7/2021的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Early life adversity and mental health in adulthood in the context of intersectionality: A longitudinal analysis of the Canadian Longitudinal Study on Aging
交叉性背景下的早期生活逆境和成年后的心理健康:加拿大老龄化纵向研究的纵向分析
  • 批准号:
    491589
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Systems analysis of mitochondrial genome maintenance in physiological context
生理背景下线粒体基因组维护的系统分析
  • 批准号:
    10898255
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Systems analysis of mitochondrial genome maintenance in physiological context
生理背景下线粒体基因组维护的系统分析
  • 批准号:
    10500906
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Systems analysis of mitochondrial genome maintenance in physiological context
生理背景下线粒体基因组维护的系统分析
  • 批准号:
    10701776
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Systems analysis of mitochondrial genome maintenance in physiological context
生理背景下线粒体基因组维护的系统分析
  • 批准号:
    10816224
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Compositional Data Methodology in the Context of Quantitative Fatty Acid Signature Analysis
定量脂肪酸特征分析背景下的成分数据方法
  • 批准号:
    RGPIN-2022-03217
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Non-Pharmaceutical Interventions and Social Context Analysis for Safe Events
安全事件的非药物干预和社会背景分析
  • 批准号:
    466313334
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Statistical Methodology for Prediction Modelling to Improve Depression Screening with Individualized Risk Estimates in the Context of Individual Participant Data Meta-analysis
预测建模的统计方法,在个体参与者数据荟萃分析的背景下通过个体化风险估计来改进抑郁症筛查
  • 批准号:
    444496
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Context Analysis for Training of Identifying Disaster Caution Information
灾害警示信息识别培训的情境分析
  • 批准号:
    21K18475
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了