Deformation theory of group schemes and Construction of extensions
群方案的变形理论与扩展的构造
基本信息
- 批准号:05640063
- 负责人:
- 金额:$ 0.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The group scheme over a discrete valuation ring which gives a deformation of a Witt group scheme to a torus is completely determined by giving a filtered structure on it. Among those groups schemes, we can specify which group scheme is stangard as a group scheme which gives the unified Kummer-Artin-Shcreier-Witt theory, and morover in lower degree cases we can show the uniqueness of such a normalized stangard group scheme.The group scheme over a discrete valuation ring which gives a deformation of a Witt group scheme to a torus has a relationship with the unit group scheme of a group-ring scheme. In fact, we can analyze the structure of the unit group schemes of those group-ring schemes, and in a lower dimensional case we can decide the explicit relationship between the stangard deformation group schemes and such unit group schemes.To construct the group schemes over a discrete valuation ring which gives a deformation of a Witt group scheme to a torus, we need to compute the homomorphism groups and cohomology groups of group schemes over an Artin local ring. When the Artin local ring is F_p-algebra, we could compute completely those groups.In the future, the works which should be done are to conpactify the group schemes over a discrete valuation ring which gives a deformation of a Witt group scheme to a torus, and to decide the homomorphism groups and cohomology groups of group schemes over an Artin local ring when it is Z/p^n-algebra. We beleave that the fundamental methods of treating those works have been already given.
通过给出离散赋值环上的滤子结构,完全确定了离散赋值环上将Witt群方案变形为环面的群方案.在这些群方案中,我们可以指定哪一个群方案是给出统一的Kummer-Artin-Shcreier-Witt理论的标准群方案,并且在较低次的情况下,我们可以证明这样的规范化标准群方案的唯一性。离散赋值环上的群方案将Witt群方案变形为环面与群环概型的单位群概型有关系。实际上,我们可以分析这些群环格式的单位群格式的结构,在低维情况下,我们可以确定标准变形群格式与这些单位群格式之间的显式关系.我们需要计算Artin局部环上群概型的同态群和上同调群。当Artin局部环是F_p-代数时,可以完全计算这些群,今后的工作是构造一个离散赋值环上的群概型,它将Witt群概型变形为环面;当Artin局部环是Z/p^n-代数时,确定Artin局部环上群概型的同态群和上同调群。我们相信,治疗这些作品的基本方法已经给出。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Sekiguchi: ""On the unified Kummer-Artin-Schreier-Witt theory"" Chuo Math. Preprint Series. Vol.41. 1-43 (1994)
T.Sekiguchi:“关于统一的 Kummer-Artin-Schreier-Witt 理论””中央数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Sekiguchi: ""On the structure of the group scheme Z[Z/p^n]^x"" Preprint. (to appear in Compositio Mathematica).
T.Sekiguchi:“论群方案 Z[Z/p^n]^x 的结构”预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Sekiguchi: ""A note on extensions of algebraic and formal groups II"" Mathematische Zeitschrift. Vol.217. 447-457 (1994)
T.Sekiguchi:“关于代数和形式群 II 的扩展的注释”“Mathematicische Zeitschrift”。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
関口力: "On the structure of the group scheme Z[Z/P^n]^x" Conpositio Mathematica. (発表予定).
Riki Sekiguchi:“论群方案 Z[Z/P^n]^x 的结构”Compositio Mathematica(即将呈现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
関口 力: "Theorie de Kummer-Artin-Schreier of applications" Journal de Theorie des Nombres de Bordeaux. (発表予定).
Riki Sekiguchi:“Theorie de Kummer-Artin-Schreier of applications”Journal de Theorie des Nombres de Bordeaux(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEKIGUCHI Tsutomu其他文献
SEKIGUCHI Tsutomu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEKIGUCHI Tsutomu', 18)}}的其他基金
On the lifting problem of cyclic coverings of non-singular curvesin characteristic P to them in characteristic 0.
关于特征P中的非奇异曲线到特征0中的循环覆盖的提升问题。
- 批准号:
19540051 - 财政年份:2007
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Historical Records of Ninna-ji Temple and Monzeki of Omuro
仁和寺与大室门迹史料研究
- 批准号:
12610362 - 财政年份:2000
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the compactification of Witt group schemes and the deformation of Art theory
论维特群方案的紧化与艺术理论的变形
- 批准号:
11640045 - 财政年份:1999
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Kummer-Artin-Schreier-Witt theory and the deformations of the Art theory
Kummer-Artin-Schreier-Witt 理论和艺术理论的变形
- 批准号:
08640059 - 财政年份:1996
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of the Social Goundition of the Insei Period
永政时代的社会基础研究
- 批准号:
07610358 - 财政年份:1995
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the deformations of cyclic Galois coverings of algebraic curves
关于代数曲线循环伽罗瓦覆盖的变形
- 批准号:
02640075 - 财政年份:1990
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Conscience of Aristocratic Decendant in Heian period -through the study of Kokiroku-
平安时代贵族后裔的良知——通过《古纪六》的研究——
- 批准号:
02610165 - 财政年份:1990
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
On the deformations of cyclic Galoi coverings of algebraic curves
关于代数曲线循环伽罗伊覆盖的变形
- 批准号:
62540066 - 财政年份:1987
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Applications of the Kummer-Artin-Schreier-Witt theory to Number Theory and to Algebraic Geometry
Kummer-Artin-Schreier-Witt 理论在数论和代数几何中的应用
- 批准号:
12640041 - 财政年份:2000
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Kummer-Artin-Schreier-Witt theory and the deformations of the Art theory
Kummer-Artin-Schreier-Witt 理论和艺术理论的变形
- 批准号:
08640059 - 财政年份:1996
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)