On the deformations of cyclic Galoi coverings of algebraic curves

关于代数曲线循环伽罗伊覆盖的变形

基本信息

  • 批准号:
    62540066
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1987
  • 资助国家:
    日本
  • 起止时间:
    1987 至 1989
  • 项目状态:
    已结题

项目摘要

Our aim of this research is to construct a lifting of a couple (C,sigma) of a complete non-singular curve C over a field of characteristic p (>O), and its automorphism sigma of order p^n (n<greater than or equal>1). For the case of n = 1, we have obtained an affirmative result by using Lang's class field theory. In the argument, one of the important ideas if to construct a deformation of the Artin-Schreier theory to the Kummer theory, i.e., to construct a deformation of an additive group to a multiplicative group. Therefore when we try to solve the problem for n<greater than or equal>2, first of all, we must construct the deformations of the Witt group W_n to a torus (G_m)^n. We decided Completely such deformations for n=2 in 1988 and 1989. In 1990, we discovered a vanishing theorem for extensions of additive groups by a torus over an Artin local ring, and usinit we treated the extensions of group schemes over a Artin local ring. Moreover, by using the vanishing theorem, we succeeded in constructing the deformations of the Artin-Schreier-Witt exact sequence to an exact sequence of Kummer type. In future, we must construct a unified theory of the Artin-Schreier-Witt and the Kummer theories, and apply it to our original problem.
我们这项研究的目的是构造特征p(&gt;O)域上完全非奇异曲线C的偶(C,sigma)的提升,及其阶为p^n(n 1)的自同构sigma<greater than or equal>。对于n = 1的情形,我们利用Lang的类域理论得到了一个肯定的结果。在论证中,一个重要的思想是构造一个由Artin-Schreier理论到库默理论的变形,即,来构造加法群到乘法群的变形。因此,当我们试图解决n = 2的问题时<greater than or equal>,首先必须构造Witt群W_n到环面(G_m)^n的变形.我们在1988年和1989年确定了n=2的完全这样的变形。1990年,我们发现了Artin局部环上加群的环面扩张的消失定理,并利用它处理了Artin局部环上群概型的扩张.此外,利用消失定理,我们成功地构造了将Artin-Schreier-Witt正合列变形为库默型正合列的方法.今后,我们必须建立一个统一的理论,阿廷-施赖埃-维特和库默理论,并应用于我们原来的问题。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
"How coarse the coarse moduli spaces for curves are!" Algebraic Geometry and Commutative Algebra. 693-712 (1987)
“曲线的粗模空间是多么粗糙啊!”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
"Some cases of extensions of group schemes over a discrete valuation ring I" Chuo-Math.Preprint Series. 8. (1989)
“在离散评估环上扩展群体方案的一些案例 I”中央数学.预印本系列。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
関口力: Algebraic and topological theories to the memory of Dr.Miyata. 283-298 (1985)
Riki Sekiguchi:纪念宫田博士的代数和拓扑理论 283-298 (1985)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
関口力: Chuo Univ.Preprint series No.1.(1988)
关口力树:中央大学预印本系列第 1 号(1988 年)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Sekino: "On the fields of definition for a curve and its Jacobian variety" Bull. Facul. Sci. & Eng. Chuo Univ., 31, 29-31(1988).
K. Sekino:“关于曲线及其雅可比变体的定义领域”Bull。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SEKIGUCHI Tsutomu其他文献

SEKIGUCHI Tsutomu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SEKIGUCHI Tsutomu', 18)}}的其他基金

On the lifting problem of cyclic coverings of non-singular curvesin characteristic P to them in characteristic 0.
关于特征P中的非奇异曲线到特征0中的循环覆盖的提升问题。
  • 批准号:
    19540051
  • 财政年份:
    2007
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of Historical Records of Ninna-ji Temple and Monzeki of Omuro
仁和寺与大室门迹史料研究
  • 批准号:
    12610362
  • 财政年份:
    2000
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the compactification of Witt group schemes and the deformation of Art theory
论维特群方案的紧化与艺术理论的变形
  • 批准号:
    11640045
  • 财政年份:
    1999
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Kummer-Artin-Schreier-Witt theory and the deformations of the Art theory
Kummer-Artin-Schreier-Witt 理论和艺术理论的变形
  • 批准号:
    08640059
  • 财政年份:
    1996
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of the Social Goundition of the Insei Period
永政时代的社会基础研究
  • 批准号:
    07610358
  • 财政年份:
    1995
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deformation theory of group schemes and Construction of extensions
群方案的变形理论与扩展的构造
  • 批准号:
    05640063
  • 财政年份:
    1993
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
On the deformations of cyclic Galois coverings of algebraic curves
关于代数曲线循环伽罗瓦覆盖的变形
  • 批准号:
    02640075
  • 财政年份:
    1990
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Conscience of Aristocratic Decendant in Heian period -through the study of Kokiroku-
平安时代贵族后裔的良知——通过《古纪六》的研究——
  • 批准号:
    02610165
  • 财政年份:
    1990
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Applications of the Kummer-Artin-Schreier-Witt theory to Number Theory and to Algebraic Geometry
Kummer-Artin-Schreier-Witt 理论在数论和代数几何中的应用
  • 批准号:
    12640041
  • 财政年份:
    2000
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Kummer-Artin-Schreier-Witt theory and the deformations of the Art theory
Kummer-Artin-Schreier-Witt 理论和艺术理论的变形
  • 批准号:
    08640059
  • 财政年份:
    1996
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了