On the deformations of cyclic Galois coverings of algebraic curves
关于代数曲线循环伽罗瓦覆盖的变形
基本信息
- 批准号:02640075
- 负责人:
- 金额:$ 0.45万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 1991
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our final aim of this research is to lift a pair (C, sigma), of a complete nonsingular curve C and its automorphism sigma of order p^n over a field of characteristic p(0), to a pair over a field of characteristic zero. For this purpose, we must construct a theory of deformations of Witt groups to tori. The n-dimensional Witt group W_n is an extension of W_<n-1> by G_a, and it contains Z/p^n as the extension of Z/p^<n-1> by Z/p. The deformations we require should preserves thus ffitrations of Witt groups. In this research, we found out that to hnadle this kind of deformations we needed a kind of vanishing theorem df extension groups of group schemes over an Artin local rings. More-over, using this vanishing theorem, we showed that we could control the deformations of W_n as an extension of W_<n-1> by G_a, the surjectivity of a specialization map, and the existence of deformations of W_n to a torus keeping the filtrations and the constant subgroup scheme Z/p^n. Using tyhese theorems, we could precisely construct the deformations of Artin-SchreierWitt exact sequences to exact sequences of kummer type. These deformed exact sequences give exactly the unified theory of the Artin-Schreier-Witt theory and the Kummer theory. In fact, we can check the unified theory by computing the first cohomology group for these deformed Witt groups. Our theory is sufficiently general, but unfortunately we could not decide the defining rings of these deformations from this direction, and for this purpose we must develop another kind of method. In fact, looking the deformations of isogenies of group schemes more precisely, we can see that our deformation of W_n is defined over the ring Z_<(p)>[mu_p^n]. Moreover, these deformations should be given from the unit groups of group rings. From this view point, we could also give some partial results.
本研究的最终目的是将特征为p(0)域上的完全非奇异曲线C及其p^n阶自同构的一对(C, sigma)提升到特征为0域上的一对(C, sigma)。为此,我们必须建立维特群对环面变形的理论。n维Witt群W_n是W_<n-1>经G_a的扩展,它包含Z/p^n作为Z/p^<n-1>经Z/p的扩展。我们所要求的变形应该保留维特群的这种特性。在本研究中,我们发现要处理这类变形,我们需要一种关于群方案在局部环上的可拓群的消失定理。此外,利用该消失定理,我们证明了W_n的变形可以控制为W_<n-1>的扩展G_a,专化映射的满射性,以及W_n的变形存在于保持滤波和恒定子群格式Z/p^n的环面。利用这些定理,我们可以精确地构造Artin-SchreierWitt精确序列到kummer型精确序列的变形。这些变形的精确序列给出了Artin-Schreier-Witt理论和Kummer理论的统一理论。事实上,我们可以通过计算这些变形Witt群的第一个上同群来检验统一理论。我们的理论是足够普遍的,但不幸的是,我们不能从这个方向确定这些变形的定义环,为此我们必须发展另一种方法。事实上,更精确地观察群格式的等同性变形,我们可以看到W_n的变形是在环Z_<(p)>[mu_p^n]上定义的。而且,这些变形必须由群环的单位群给出。从这个角度来看,我们也可以给出一些部分的结果。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
関口 力: "Theorie de KummerーArtinーSchreier" Comptes rendus de l′Academie des Sciences. (1991)
Riki Sekiguchi:“Theorie de Kummer-Artin-Schreier”Comptes rendus de lAcademie des Sciences (1991)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Sekiguchi: ""On the deformations of Witt groups to tori, II"" J. Alg.138, No. 2. 273-297 (1991)
T. Sekiguchi:“关于维特群到环面的变形,II”J. Alg.138,No. 2. 273-297 (1991)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Sekiguchi: ""On the sculpture of the unit group of Z_<(p>[mu_p^2][x]/(x^p2^<>-1)"" Preprint. 1-17 (1991)
T. Sekiguchi:“论Z_<(p>[mu_p^2][x]/(x^p2^<>-1)单位群的雕塑””预印本。1-17 (1991)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Sekiguchi: ""Theori de Kummer-Artin-Schreier"" C. R. Acad. Sci. Pris. t. 312, Serie I. 417-420 (1991)
T. Sekiguchi:“Theori de Kummer-Artin-Schreier”” C. R. Acad。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
"On the sculpture of the unit group of Z(p)[μp_2][x]/(X^<p2>ー1)" Preprint. (1992)
《论Z(p)[μp_2][x]/(X^<p2>-1)单位群的雕塑》预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEKIGUCHI Tsutomu其他文献
SEKIGUCHI Tsutomu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEKIGUCHI Tsutomu', 18)}}的其他基金
On the lifting problem of cyclic coverings of non-singular curvesin characteristic P to them in characteristic 0.
关于特征P中的非奇异曲线到特征0中的循环覆盖的提升问题。
- 批准号:
19540051 - 财政年份:2007
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Historical Records of Ninna-ji Temple and Monzeki of Omuro
仁和寺与大室门迹史料研究
- 批准号:
12610362 - 财政年份:2000
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the compactification of Witt group schemes and the deformation of Art theory
论维特群方案的紧化与艺术理论的变形
- 批准号:
11640045 - 财政年份:1999
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Kummer-Artin-Schreier-Witt theory and the deformations of the Art theory
Kummer-Artin-Schreier-Witt 理论和艺术理论的变形
- 批准号:
08640059 - 财政年份:1996
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of the Social Goundition of the Insei Period
永政时代的社会基础研究
- 批准号:
07610358 - 财政年份:1995
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deformation theory of group schemes and Construction of extensions
群方案的变形理论与扩展的构造
- 批准号:
05640063 - 财政年份:1993
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Conscience of Aristocratic Decendant in Heian period -through the study of Kokiroku-
平安时代贵族后裔的良知——通过《古纪六》的研究——
- 批准号:
02610165 - 财政年份:1990
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
On the deformations of cyclic Galoi coverings of algebraic curves
关于代数曲线循环伽罗伊覆盖的变形
- 批准号:
62540066 - 财政年份:1987
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Applications of the Kummer-Artin-Schreier-Witt theory to Number Theory and to Algebraic Geometry
Kummer-Artin-Schreier-Witt 理论在数论和代数几何中的应用
- 批准号:
12640041 - 财政年份:2000
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Kummer-Artin-Schreier-Witt theory and the deformations of the Art theory
Kummer-Artin-Schreier-Witt 理论和艺术理论的变形
- 批准号:
08640059 - 财政年份:1996
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




