Study about a construction of optimally generalizing neural networks

最优泛化神经网络的构建研究

基本信息

  • 批准号:
    06452399
  • 负责人:
  • 金额:
    $ 3.84万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

In this sutdy, we first formalized the problem of training a neural network as one of an inverse problem in function approximation. Next, we provided necessary and sufficient conditions for optimal generalization capability in terms of the number of hidden units, the basis functions, and the weights connected to each hidden unit. Furthermore, we gave a methodology to construct neural networks with optimal generalization capability.From this methodology, we can see that are an infinite numbers of neural networks with the same generalization capability. From among this infinite number, we specified the ones which are most robust with respect to some kinds of faults which may occur in actual usage. Concretely, we gave methods to decide weights in neural networks which optimally suppress the influences of each of the following faults : a proportional errors in the weights, a connection fault, and a stuck-at gamma fault. Moreover, we gave the methods to decide not only weights but also basis functions for the hidden units which optimally suppress the above three faults.Next we constructed a method for incremental learning in which only the current network and one new datum are used to obtain a new network at each step, while maintaining the property that the neural network is optimally generalizing with respect to all of the data learned so far. We think our results have the potential for being applied to the problem of active learning.Moreover, we gave a solution to the problem of over-learning which occurs in training of neural networks using the error-backpropagation algorithm, i.e., we introduced the concept of admissibility defined by relation-ship between two learning criteria. According to the admissibility, we devised methods for choosing training data to prevent over-leaning.
本文首先将神经网络的训练问题形式化为函数逼近中的一个反问题。接下来,我们提供了最佳泛化能力的必要条件和充分条件,隐含单元的数量,基函数和连接到每个隐含单元的权重。此外,我们还给出了一种构造具有最优泛化能力的神经网络的方法,从这个方法中我们可以看出,有无限多个神经网络具有相同的泛化能力。从这个无限的数字中,我们指定了那些最强大的相对于某些类型的故障,可能会发生在实际使用中。具体地说,我们给出的方法来决定神经网络的权重,最佳地抑制以下故障的影响:一个比例误差的权重,连接故障,和一个固定的伽玛故障。此外,我们给出了确定隐层单元的权值和基函数的方法,从而最优地抑制了上述三种故障。接下来,我们构造了一种增量学习方法,在该方法中,每一步只使用当前网络和一个新数据来获得一个新网络,同时保持神经网络对迄今为止所学习的所有数据进行最优泛化的性质。我们认为我们的结果具有应用于主动学习问题的潜力。此外,我们给出了使用误差反向传播算法训练神经网络时出现的过学习问题的解决方案,即,我们引入了由两个学习准则之间的关系定义的容许性的概念。根据可接受性,我们设计了选择训练数据的方法,以防止过度学习。

项目成果

期刊论文数量(176)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hidemitsu Ogawa: "Construction of optimally generalizing neural networks" Proc.UUO,Int.Symp.on Ultrafast and Ultra-Parellel Optoelectronics,Chiba,Japan. 187-190 (1994)
Hidemitsu Okawa:“最优泛化神经网络的构建”Proc.UUO,Int.Symp.on 超快和超并行光电子学,千叶,日本。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yukihiko Yamashita: "Relative Keruhunen-Loeve operator" Proc.12th ICPR,Int.Conf.on Pattern Recognition. 3. 168-170 (1994)
Yukihiko Yamashita:“相对 Keruhunen-Loeve 算子”Proc.12th ICPR,Int.Conf.on 模式识别。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
平林晃: "誤り修正型記憶学習" 1996年電子情報通信学会総合大会. 6. 18-18 (1996)
Akira Hirabayashi:“纠错记忆学习”1996 年 IEICE 大会 6. 18-18 (1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Dawei Liu: "Pattern recognition in the presence of noise" Pattern Recognition. 28. 989-995 (1995)
Dawei Liu:“存在噪声时的模式识别”模式识别。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Sethu Vijayakumar: "Incremental learning with optimal generalizing ability" Tech.Rep.of IEICE. NC95-9. 65-72 (1995)
Sethu Vijayakumar:“具有最佳泛化能力的增量学习”IEICE 技术代表。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OGAWA Hidemitsu其他文献

OGAWA Hidemitsu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OGAWA Hidemitsu', 18)}}的其他基金

Theory of Family of Learnings-From a Single Learning to Infinitely Many Learning-
学习族理论-从单一学习到无限多学习-
  • 批准号:
    14380158
  • 财政年份:
    2002
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Generalization Capability of Memorization Leaning
记忆学习的泛化能力
  • 批准号:
    11480072
  • 财政年份:
    1999
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Active learning for optimally generalizing neural networks
用于优化泛化神经网络的主动学习
  • 批准号:
    08458076
  • 财政年份:
    1996
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study on optimal generalizing learning schema for neural networks based on theories of image processing filters
基于图像处理滤波器理论的神经网络最优泛化学习模式研究
  • 批准号:
    02452155
  • 财政年份:
    1990
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
A Research for Novel Computerized Topography Technologies for Moving Objects.
针对移动物体的新型计算机地形技术的研究。
  • 批准号:
    63460133
  • 财政年份:
    1988
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Direct Methods of 3 Dimensional Image Reconstruction from Cone-Beam Projections.
锥束投影 3 维图像重建的直接方法。
  • 批准号:
    61550257
  • 财政年份:
    1986
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
  • 批准号:
    2339198
  • 财政年份:
    2024
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Continuing Grant
CAREER: Towards Continual Learning on Evolving Graphs: from Memorization to Generalization
职业:走向演化图的持续学习:从记忆到泛化
  • 批准号:
    2338878
  • 财政年份:
    2024
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Standard Grant
Development of a high-rate ultrasonic windspeed measurement method based on a generalization of time inverse method and wave number estimation using EKF
开发基于时间反演方法和 EKF 波数估计推广的高速超声波风速测量方法
  • 批准号:
    23K03880
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
  • 批准号:
    2239566
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Continuing Grant
Disentangling generalization in deep neural networks
解开深度神经网络中的泛化问题
  • 批准号:
    2872706
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Studentship
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
  • 批准号:
    23K03042
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
  • 批准号:
    23H00081
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了