A study on optimal generalizing learning schema for neural networks based on theories of image processing filters
基于图像处理滤波器理论的神经网络最优泛化学习模式研究
基本信息
- 批准号:02452155
- 负责人:
- 金额:$ 3.65万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 1991
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A theory for neural network learning which is very effective for analyzing the generalization ability and the overlearning problem is developed. This theory is based on the image restoration theories proposed by the head investigator of this project. Although the problems of generalization and image restoration seem to have nothing in common, we have shown that both problems can be dealt with under the same methodology if we formalize them as a kind of inverse problem. This novel approach provides an analytical and quantitative method for the problems of generalization and over-learning which have been so far treated qualitatively. Followings are the major results obtained in this project.・A new framework of generalization which can extract general structures among training samples is developed based on the image restoration theories.・We analyze the generalization ability of the back-propagation using the framework.・We provide a way of choosing, training samples which does not cause the over-learning problem and gives an optimal generalizing ability.・Above theoretical results are examined by some computer simulations.
提出了一种分析神经网络泛化能力和过度学习问题的有效神经网络学习理论。该理论是基于本项目首席研究员提出的图像恢复理论。虽然泛化和图像恢复的问题似乎没有什么共同之处,但我们已经证明,如果我们将它们形式化为一种逆问题,这两个问题可以在相同的方法下处理。这种新方法为迄今为止定性处理的泛化和过度学习问题提供了一种分析和定量的方法。以下是本项目取得的主要成果。·基于图像恢复理论,开发了一种新的泛化框架,可以提取训练样本之间的一般结构。·我们使用该框架分析了反向传播的泛化能力。我们提供了一种选择的方法,训练样本不会导致过度学习问题,并给出了最佳的泛化能力。通过计算机模拟验证了上述理论结果。
项目成果
期刊论文数量(61)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小川 英光: "パタ-ン集合を最良に近似する部分空間" 電子情報通信学会技術報告. PRU90ー67. 67-72 (1990)
Hidemitsu Okawa:“最接近模式集的子空间”IEICE 技术报告。 67-72 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Erkki Oja,Hidemitsu Ogawa and Jaroonsakdi Wangviwattana: "Principal component analysis by homogeneous neural networks,Part I:The weighte subspace criterion" IEICE Trans.on Information and Systems. E75-D No.3. (1992)
Erkki Oja、Hidemitsu Okawa 和 Jaroonsakdi Wangviwattana:“同质神经网络的主成分分析,第一部分:加权子空间准则”IEICE Trans.on Information and Systems。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Yamashita and H. Ogawa: "Optimum image restoration filters and generalized inverse of operators" IEICE Trans. D-II, J75-D-II. 5. (1992)
Y. Yamashita 和 H. Okawa:“最佳图像恢复滤波器和算子的广义逆”IEICE Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hidemitsu Ogawa and Itsuo Kumazawa: "Mathematical Methods in Tomography" Lecture Notes in Mathematics, Vol. 1497, Radon Transform and Analog Coding. Springer-Verlag. 13 (1991)
小川秀光和熊泽五雄:《断层扫描中的数学方法》数学讲义,卷。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Erkki Oja, Hidemitsu Ogawa and Jaroonsakdi Wangviwattana: "Artificial Neural Networks, Learning in Nonlinear" Constrained Hebbian Networks. Elsevier Science Pub. 16 (1991)
Erkki Oja、Hidemitsu Okawa 和 Jaroonsakdi Wangviwattana:“人工神经网络,非线性学习”约束赫布网络。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OGAWA Hidemitsu其他文献
OGAWA Hidemitsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OGAWA Hidemitsu', 18)}}的其他基金
Theory of Family of Learnings-From a Single Learning to Infinitely Many Learning-
学习族理论-从单一学习到无限多学习-
- 批准号:
14380158 - 财政年份:2002
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generalization Capability of Memorization Leaning
记忆学习的泛化能力
- 批准号:
11480072 - 财政年份:1999
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Active learning for optimally generalizing neural networks
用于优化泛化神经网络的主动学习
- 批准号:
08458076 - 财政年份:1996
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study about a construction of optimally generalizing neural networks
最优泛化神经网络的构建研究
- 批准号:
06452399 - 财政年份:1994
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
A Research for Novel Computerized Topography Technologies for Moving Objects.
针对移动物体的新型计算机地形技术的研究。
- 批准号:
63460133 - 财政年份:1988
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Direct Methods of 3 Dimensional Image Reconstruction from Cone-Beam Projections.
锥束投影 3 维图像重建的直接方法。
- 批准号:
61550257 - 财政年份:1986
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CRII: III: Self-Supervised Graph Neural Network Meta-Learning for Cancer Multi-Omics and Driver Discovery
CRII:III:用于癌症多组学和驱动发现的自监督图神经网络元学习
- 批准号:
2245805 - 财政年份:2023
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Development of Deep Learning Methods for Generating and Analyzing Neural Network Microscopy Images
用于生成和分析神经网络显微图像的深度学习方法的开发
- 批准号:
23KF0296 - 财政年份:2023
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
- 批准号:
2246157 - 财政年份:2023
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
FET: Medium: Neural network computation and learning in well-mixed and spatially-organized molecular systems
FET:中:混合良好且空间组织的分子系统中的神经网络计算和学习
- 批准号:
2212546 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Continuing Grant
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Studentship
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
- 批准号:
2145703 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Continuing Grant
Neural Network Dynamics Over the Course of Aversive Conditioning: The Influence of Visuocortical and Attentional Network Activity in Predicting Extinction Learning
厌恶条件作用过程中的神经网络动力学:视觉皮层和注意网络活动对预测灭绝学习的影响
- 批准号:
10463102 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Learning deep neural network architectures for novel data domains
学习新数据域的深度神经网络架构
- 批准号:
577350-2022 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Alliance Grants
An Attempt to Propose Prescription for Hemodialysis Treatment Using Neural Network Machine Learning.
尝试使用神经网络机器学习提出血液透析治疗处方。
- 批准号:
22K07426 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
- 批准号:
2207449 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant














{{item.name}}会员




