Direct Methods of 3 Dimensional Image Reconstruction from Cone-Beam Projections.
锥束投影 3 维图像重建的直接方法。
基本信息
- 批准号:61550257
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1986
- 资助国家:日本
- 起止时间:1986 至 1987
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computerized Tomography has had a profound impact on medical diagnosis techniques. In the future, increasing computational power will make it possible to reconstruct 3 dimensional images directly from efficiently collected projections. In this research project we developped a theoretical basis for this ultimate goal from the following viewpoints.(1) What is the most efficient scanning (sampling) schema to collect projections? And what way of arrangement of the sampling points gives us enough imformation to estimate the image uniquely? How can we reconstruct the image from these sampled data?(2) Even in such an efficient sampling schema, there will be some redundancy among the data. How can we use the redundancy to make the reconstruction method robust and stable against the noise.In this project we have snswered above questions as follows.(1) As the efficient acsnning schema, we used the cone beam scanning schema and derived the conditions for the samplings in this schema to be enough to determine the image uniquely. In addition we developped the reconstruction formula for samplings using a series expansion method in which the optimal arrangement of the sample points was analytically discussed.(2) We developped projection filter which uesd the redundancy in data to cancel the noise without degrading the resolution of the image. Finally, as another way of making use of the redunfancy, we decelopped an impulsive noise canceling technique based on the idea of analog coding.
计算机断层扫描对医学诊断技术产生了深远的影响。未来,计算能力的增强将使得直接从有效收集的投影重建 3 维图像成为可能。在本研究项目中,我们从以下角度为这一最终目标奠定了理论基础。(1)收集投影的最有效的扫描(采样)模式是什么?采样点的排列方式如何为我们提供足够的信息来唯一地估计图像?我们如何从这些采样数据中重建图像?(2)即使在如此有效的采样模式中,数据之间也会存在一些冗余。如何利用冗余度使重构方法对噪声具有鲁棒性和稳定性。在本课题中,我们对上述问题进行了如下回答:(1)作为高效扫描方案,我们采用了锥束扫描方案,并推导了该方案中采样足以唯一确定图像的条件。此外,我们还利用级数展开方法开发了采样重建公式,并对采样点的最佳排列进行了分析讨论。(2)开发了投影滤波器,它利用数据中的冗余来消除噪声,而不降低图像的分辨率。最后,作为利用冗余的另一种方式,我们开发了一种基于模拟编码思想的脉冲噪声消除技术。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Imiya;H.Ogawa: Int.Workshop on Physics and Engineering in Computerized Multidimensional Imaging and Processing. 42-49 (1986)
A.Imiya;H.Okawa:计算机多维成像和处理物理与工程国际研讨会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makoto Sato: ""optimization of the generalized Hough transform"" Proc. of the 4th International Conference on Image Analysis Processing. (1987)
Makoto Sato:“广义霍夫变换的优化”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Imiya;T.Sasaki;H.Ogawa: Proc.ICASSP'86;1986 IEEE-IECEJ-ASJ Int.Conf.on Acoustics,Speech,and Signal Processing. 1. 285-288 (1986)
A.Imiya;T.Sasaki;H.Okawa:Proc.ICSSP86;1986 IEEE-IECEJ-ASJ Int.Conf.on 声学、语音和信号处理。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Atsushi Imiya: Int.Workshop on Physics and Engineering in Computerized Multidimensional Imaging and Processing. 42-49 (1986)
Atsushi Imiya:计算机多维成像和处理物理与工程国际研讨会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小川英光: 電子情報通信学会論文誌(A). J71-A. 527-534 (1988)
小川秀光:电子、信息和通信工程师学会汇刊 (A)。J71-534 (1988)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OGAWA Hidemitsu其他文献
OGAWA Hidemitsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OGAWA Hidemitsu', 18)}}的其他基金
Theory of Family of Learnings-From a Single Learning to Infinitely Many Learning-
学习族理论-从单一学习到无限多学习-
- 批准号:
14380158 - 财政年份:2002
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generalization Capability of Memorization Leaning
记忆学习的泛化能力
- 批准号:
11480072 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Active learning for optimally generalizing neural networks
用于优化泛化神经网络的主动学习
- 批准号:
08458076 - 财政年份:1996
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study about a construction of optimally generalizing neural networks
最优泛化神经网络的构建研究
- 批准号:
06452399 - 财政年份:1994
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
A study on optimal generalizing learning schema for neural networks based on theories of image processing filters
基于图像处理滤波器理论的神经网络最优泛化学习模式研究
- 批准号:
02452155 - 财政年份:1990
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
A Research for Novel Computerized Topography Technologies for Moving Objects.
针对移动物体的新型计算机地形技术的研究。
- 批准号:
63460133 - 财政年份:1988
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
- 批准号:
2309491 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Self-supervised deep-learned physics-informed PET image reconstruction for oncology
用于肿瘤学的自监督深度学习物理学 PET 图像重建
- 批准号:
2886561 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Studentship
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
- 批准号:
2244882 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
- 批准号:
RGPIN-2021-03858 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
Machine learning augmented hierarchical tomographic image reconstruction of human organs
机器学习增强人体器官分层断层图像重建
- 批准号:
2720289 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Studentship
Improving the Signal Model in Radar-based Image Reconstruction and a Novel Machine Learning Approach for Breast Microwave Imaging
改进基于雷达的图像重建中的信号模型以及乳腺微波成像的新型机器学习方法
- 批准号:
547670-2020 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Signal Processing and Interpretable Deep Network for Image Reconstruction
用于图像重建的信号处理和可解释深度网络
- 批准号:
2784995 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Studentship














{{item.name}}会员




