Normaliz: development and long term sustainability
标准化:发展和长期可持续性
基本信息
- 批准号:440345850
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Normaliz is a tool for mathematical research that has been developed in Osnabrück since 1997. It performs computations in discrete convex geometry by solving linear Diophantine systems of equations, inequalities and congruences. In addition, solutions can be counted by degree, which amounts to the computation of Hilbert Ehrhart series. Special tasks are the computation of facets of convex polytopes and the lattice points. Recently the scope of Normaliz has extended by the computation of algebraic polytopes.Normaliz has found applications in many areas of mathematics. They include polytope theory, combinatorial algebra and geometry, algebraic statistics, integer optimization, combinatorial topology and group theory. It has also been used in theoretical physics and mathematical music.Normaliz is written in C++. It is available for Linux, MacOS and MS Windows. For polynomial arithmetic is uses CoCoALib, and for special purposes it falls back on further optional libraries line Flint. In addition to the input of data in files it offers access via a very flexible template controlled and extensive C++ class library. The algorithms of Normaliz have been developed for parallelization on shared memory systems and are therefore very powerful. The dissemination of Normaliz has profited from its availability in several computer algebra systems like CoCoA, GAP, Macaulay2, SageMath and Singular.The first goal of this project is the extension of Normaliz by further mathematically important and attractive functions. This includes the computation of Gröbner, Markov and Graver bases, which have numerous applications in algebraic statistics. A further addition is the exploitation of automorphism groups for the computation of further invariants, which is to some extent a difficult problem. The computation of Hilbert series will be extended from the singly graded to the multigraded case which in particular has applications in parametric problems. We will also create a C++ class library for toric algebraic geometry whose combinatorial basis is formed by rational polyhedral fans. For the increase of computation power it is necessary to add heterogeneous parallelization; it will also allow cloud computing. The algorithms of Normaliz will be complemented by methods of linear programming, which then will also be available for algebraic polytopes.
归一化是一个数学研究工具,自1997年以来一直在osnabrck开发。它通过求解方程、不等式和同余的线性丢芬图系统来执行离散凸几何的计算。此外,解可以按度计数,这相当于Hilbert Ehrhart级数的计算。特殊的任务是计算凸多面体的面和点阵点。近年来,正则化的范围通过代数多面体的计算得到了扩展。归一化在数学的许多领域都有应用。它们包括多面体理论、组合代数与几何、代数统计、整数优化、组合拓扑和群论。它也被用于理论物理和数学音乐。normalize是用c++编写的。它适用于Linux、MacOS和MS Windows。对于多项式算法,它使用cocoalition,对于特殊用途,它依赖于其他可选库,如Flint。除了在文件中输入数据之外,它还通过一个非常灵活的模板控制和扩展的c++类库提供访问。normalize算法是为共享内存系统上的并行化而开发的,因此非常强大。normalize的传播得益于它在几个计算机代数系统中的可用性,如CoCoA、GAP、Macaulay2、SageMath和Singular。这个项目的第一个目标是通过进一步的数学上重要和有吸引力的函数来扩展归一化。这包括Gröbner, Markov和Graver基的计算,它们在代数统计中有许多应用。进一步的补充是利用自同构群来计算进一步的不变量,这在某种程度上是一个难题。希尔伯特级数的计算将从单阶级数扩展到多阶级数,特别是在参数问题中有应用。我们还将创建一个面向环代数几何的c++类库,其组合基由有理多面体扇形构成。为了提高计算能力,必须加入异构并行;它还将允许云计算。归一化算法将由线性规划的方法补充,然后也将用于代数多面体。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algebraic Polytopes in Normaliz
- DOI:10.1007/978-3-030-52200-1_19
- 发表时间:2020-06-06
- 期刊:
- 影响因子:0
- 作者:Bruns W
- 通讯作者:Bruns W
Polytope volume by descent in the face lattice and applications in social choice
- DOI:10.1007/s12532-020-00198-z
- 发表时间:2020-11-18
- 期刊:
- 影响因子:6.3
- 作者:Bruns, Winfried;Ichim, Bogdan
- 通讯作者:Ichim, Bogdan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Winfried Bruns其他文献
Professor Dr. Winfried Bruns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Winfried Bruns', 18)}}的其他基金
Algorithms for rational cones and toric geometry
有理圆锥和复曲面几何的算法
- 批准号:
239429978 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
Kombinatorische Methoden in Algebra und Topologie
代数和拓扑中的组合方法
- 批准号:
110059071 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
损伤线粒体传递机制介导成纤维细胞/II型肺泡上皮细胞对话在支气管肺发育不良肺泡发育阻滞中的作用
- 批准号:82371721
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
增强子在小鼠早期胚胎细胞命运决定中的功能和调控机制研究
- 批准号:82371668
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
- 批准号:82371276
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
"胚胎/生殖细胞发育特性激活”促进“神经胶质瘤恶变”的机制及其临床价值研究
- 批准号:82372327
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
TMEM30A介导的磷脂酰丝氨酸外翻促进毛细胞-SGN突触发育成熟的机制研究
- 批准号:82371172
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
- 批准号:82372014
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
细胞核分布基因NudCL2在细胞迁移及小鼠胚胎发育过程中的作用及机制研究
- 批准号:31701214
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
- 批准号:
24K08316 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Japan Sepsis Data Bank and analysis of factors associated with long-term outcomes in sepsis
日本脓毒症数据库的开发以及与脓毒症长期结果相关的因素分析
- 批准号:
23K09618 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of motion picture recording and measurement technique of femtosecond light pulse propagation with ultrahigh-temporal resolution and long recordable time and its application
超高时间分辨率、长记录时间的飞秒光脉冲传播运动图像记录与测量技术开发及应用
- 批准号:
23H01422 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Development of Fire-Safe and Low-Cost Flow Batteries using New Membranes for Long-Duration Energy Storage
SBIR 第一阶段:使用新型膜开发防火且低成本的液流电池,用于长期储能
- 批准号:
2212748 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Assessing and Improving the Durability of Compensatory Cognitive Training for Older Veterans (AID-CCT)
评估和提高老年退伍军人补偿性认知训练的持久性 (AID-CCT)
- 批准号:
10636523 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Addressing Gaps in Language Access Services through a Patient-Centered Decision-Support Tool
通过以患者为中心的决策支持工具解决语言获取服务中的差距
- 批准号:
10699030 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing a nonpharmacological pain intervention for community dwelling older adults with dementia
为社区居住的痴呆症老年人开发非药物疼痛干预措施
- 批准号:
10644490 - 财政年份:2023
- 资助金额:
-- - 项目类别: