Semigroups of Locally Lipschitzian Operators and applications

局部 Lipschitzian 算子半群及其应用

基本信息

  • 批准号:
    04640137
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1992
  • 资助国家:
    日本
  • 起止时间:
    1992 至 1993
  • 项目状态:
    已结题

项目摘要

1. The existence of radial solutions for the semilinear Laplace equations in R^n is proved and the asymptotic behavior of the solutions is investigated. The elliptic equation with the nonlinear term f(u)=*u*^<p-1>u (*u*(〕SY.gtoreq.〔)1), =*u*^<q-1>u (*u*<1), where 1<p<(n+2)/(n-2)<q, is studied and it is shown that any radial solution behaves, as *chi*->*, like either (i)c*chi*^<-(n-2)> or (ii)(〕SY.+-.〔)c^<**>*chi*^<-2/(q-1)>.2. The more general nonlinear term than the above f(u) is considered and the Dirichlet problem of the elliptic equations in symmetric domains ; annulus, ball, exterior of ball and R^n are investigated. The existence of radial solution having exactly kappa zeros in 0(〕SY.ltoreq.〔)*chi*<* is proved for each domain and any integer kappa(〕SY.gtoreq.〔)0. The result gives a weak sufficient condision on the nonlinear term for the existence of radial solutions.3. The existence of weak solutions of nonlinear Klein-Gordon equations, FitzHugh-Nagumo equations and two dimensional Navier-Stokes equations is shown to be proved by using an unified abstract theory of semigroups of nonlinear locally Lip-schitzian operators.4. A class of generalized dissipative operators is introduced and the existence and the convergence of difference approximate solutions of abstract Cauchy problems for the operation in the class are shown. Both of the known theory ofgeneration of semigroups and the typical uniquely existence theorems of solutions of ordinary differential equations are extended.
1.证明了R^n中半线性拉普拉斯方程径向解的存在性,并研究了解的渐近性态.具有非线性项f(u)=*u*^<p-1>u(*u*()SY ≥. ()1)本文<q-1>研究了一个径向解,其中1&lt;p&lt;(n+2)/(n-2)&lt;q,并证明了任何径向解的性质都是 *chi*-&gt;*,类似于(i)c*chi*^-(n-2)&gt;或(ii)()SY. ()c^&lt;**&gt;*chi*^&lt;-2/(q-1)&gt;.2。考虑了比上述f(u)更一般的非线性项,研究了对称区域上椭圆型方程的Dirichlet问题:环、球、球的外部和R^n.证明了在0()SY ≤ 0()中具有精确kappa零点的径向解的存在性。对于每个域和任意整数kappa()SY ≥,证明了()*chi*&lt;*。()0.结果给出了非线性项存在径向解的一个弱充分条件.利用非线性局部Lipschitz算子半群的统一抽象理论证明了非线性Klein-Gordon方程、FitzHugh-Nagumo方程和二维Navier-Stokes方程弱解的存在性.引入了一类广义耗散算子,证明了该类算子的抽象Cauchy问题的差分近似解的存在性和收敛性。推广了已知的半群生成理论和常微分方程解的典型唯一存在性定理。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ryuji Kajikiya: "Nodal solutions of superlinear elliptic equations in symmetric domains." Advances in Mathematical Sciences and Applications. (発表予定).
Ryuji Kajikiya:“对称域中超线性椭圆方程的节点解。数学科学与应用进展”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshikazu Kobayashi and Shinnosuke Ohara: "Semigroups of locally Lipschitzian Operetors and Applications" Lecture Notes in Mathematics. 1540. 191-211 (1993)
Yoshikazu Kobayashi 和 Shinnosuke Ohara:“局部 Lipschitzian 算子及其应用的半群”数学讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R,Kajikiya: "Existence and asymptotic behovior of nodal sotulions for semilinear ellibtic equations" J.Differential Equations.
R,Kajikiya:“半线性椭圆方程的节点解的存在性和渐近行为”J.微分方程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshikazu Kobayashi and Naoki Tanaka: "Nonlinear Semigroups and Evolution Gaverned by "Generalized" Dissipative Operators" Advances in Mathematical Science and Applications. 3. 401-426 (1993)
Yoshikazu Kobayashi 和 Naoki Tanaka:“非线性半群和由“广义”耗散算子给出的演化”数学科学与应用的进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y,Kobayashi: "Euolution Governed by “Generatized" Dissipative Operators" Proc.of Japan Acad.68. 223-226 (1992)
Y,Kobayashi:“由“生成”耗散算子控制的演化”Proc.68(1992)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASHI Yoshikazu其他文献

Study on exercise support mechanism with self-retainable joint mechanism
自保持关节机构运动支撑机构研究
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    SAITO Ayuko;KIZAWA Satoru;KOBAYASHI Yoshikazu;MIYAWAKI Kazuto;酒屋亮太
  • 通讯作者:
    酒屋亮太
DEVELOPMENT OF AE ARRIVAL TIMES DETECTION METHOD BY USE OF ROOT MEAN SQUARE VOLTAGE IN NOISE
噪声中均方根电压AE到达时间检测方法的研制
Evaluation of visual-motor coordination as a ball is caught
接球时视觉运动协调性的评估

KOBAYASHI Yoshikazu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASHI Yoshikazu', 18)}}的其他基金

Basic theory of Lipschitz evolution operators and applications
Lipschitz演化算子的​​基本理论及应用
  • 批准号:
    16K05212
  • 财政年份:
    2016
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AE-Tomography for anisotropic materials
各向异性材料的 AE 断层扫描
  • 批准号:
    15K06193
  • 财政年份:
    2015
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large deformation analysis of liquefied ground by using a hybrid method on the basis of particle method and finite element method
基于粒子法和有限元法的混合方法液化地面大变形分析
  • 批准号:
    22760360
  • 财政年份:
    2010
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Food cultures of the Muromachi period in fairytale book
童话书中的室町时代的饮食文化
  • 批准号:
    21500771
  • 财政年份:
    2009
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control 0f paint properties by surface texture
通过表面纹理控制 0f 油漆属性
  • 批准号:
    21560152
  • 财政年份:
    2009
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Food Culture of the Muromachi Period as Perceived
室町时代的饮食文化
  • 批准号:
    18500611
  • 财政年份:
    2006
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Mapping Class Semigroups and the Classification of Conformal Dynamical Systems
映射类半群与共形动力系统的分类
  • 批准号:
    2302907
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Standard Grant
CAREER: Heat Semigroups and Strichartz Estimates on Fractals
职业:分形上的热半群和 Strichartz 估计
  • 批准号:
    2140664
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Continuing Grant
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
  • 批准号:
    EP/V032003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Fellowship
New directions in C*-algebras, Groupoids, and Inverse Semigroups
C* 代数、群形和逆半群的新方向
  • 批准号:
    RGPIN-2021-03834
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
  • 批准号:
    RGPIN-2022-04137
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Number theory, semigroups, and operator algebras
数论、半群和算子代数
  • 批准号:
    557116-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Congruences on Direct Products of Semigroups
半群直积的同余式
  • 批准号:
    2595220
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Studentship
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
New directions in C*-algebras, Groupoids, and Inverse Semigroups
C* 代数、群形和逆半群的新方向
  • 批准号:
    DGECR-2021-00372
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Launch Supplement
New directions in C*-algebras, Groupoids, and Inverse Semigroups
C* 代数、群形和逆半群的新方向
  • 批准号:
    RGPIN-2021-03834
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了