SYMBIOSIS OF HETEROGENEOUS PARALLELISMS
异构并行性的共生
基本信息
- 批准号:04650301
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study has a dual purpose : Designing an emulator which realizes symbiosis of heterogeneous parallelisms and presenting new connectionst learning algorithms. On the realization of the emulator, two workstations are used. One is for an SIMD mechanism where a finegrained parallelism is emulated. The other is for a coarse-grained parallelsm which controls the massive parallel part. KL1 was used for this control mechanism. The multiply descent cost competitive learning algorithm was run on this symbiotic system. The nondeterminism caused by the parallelsm was found to be rather meritorious for the exit from bad local minima.For the developement of new learning algorithms, the head investigator presented two major new methods. On the supervised learning, the backpropagation with additional penalties was presented. This algorithm includes entropy/divergence penalties on the weithts and outputs. Pruning of the network and improvement of errors and generalization were acheived.On the unsupervised case, the head investigator created the harmonic competitive learning. This algorithm enables to solve multiple criteria optimization with the aid of self-organization. The logarithmic competition bias and the logarithmic weight mutation solved the local optimality in the case of data compression.Thus, this research project was completed by accomplishing the claimed results.
本研究具有双重目的:设计一个实现异构并行共生的仿真器,并提出新的连接学习算法。在仿真器的实现上,使用了两个工作站。一个是SIMD机制,其中模拟了细粒度的并行性。另一种是控制大量并行部分的粗粒度并行。KL1用于这种控制机制。在该共生系统上运行了多重下降代价竞争学习算法。发现由并行性引起的不确定性对于从坏的局部极小值中退出是很有价值的。对于新的学习算法的发展,首席研究员提出了两种主要的新方法。在监督学习上,提出了带附加惩罚的反向传播算法。该算法在权重和输出上包含熵/散度惩罚。实现了网络的修剪、误差的改善和泛化。在无监督情况下,首席调查员创造了和谐竞争学习。该算法能够借助自组织解决多准则优化问题。对数竞争偏差和对数权值突变解决了数据压缩时的局部最优性问题。因此,这个研究项目完成了所声称的结果。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Matsuyama: "Competitive Learning among Massively Parallel Agents" Neural, Parallel & Scientific Computations. vol.1. 181-198 (1993)
Y.Matsuyama:“大规模并行智能体之间的竞争学习”神经、并行
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsuyama: "Learning in Competitive Networks with Penalties" Proc.Int.Joint Conf.on Neural Networks. IV. 773-778 (1992)
Y.Matsuyama:“在带有惩罚的竞争网络中学习”Proc.Int.Joint Conf.on Neural Networks。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yasuo Matsuyama: "Learning in competitive networks with penalties" Proc.Int.Joint.Conf.on Neural Networks. IV. 773-778 (1992)
Yasuo Matsuyama:“在有惩罚的竞争网络中学习”Proc.Int.Joint.Conf.on Neural Networks。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsuyama: "Competitive Learning among Massively Parallel Agents" Neural,Parallel & Scientific Computations. I. 181-198 (1993)
Y.Matsuyama:“大规模并行代理之间的竞争学习”神经,并行
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsuyama & M.Tan: "Digital Movies Using Optimized Feature Maps" Proc.Int.Conference on Neural Networks. x. x-y (1994)
松山勇
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUYAMA Yasuo其他文献
MATSUYAMA Yasuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUYAMA Yasuo', 18)}}的其他基金
Fast Likelihood Ratio Optimization Based Upon Genaralized Logarithm and Its Applications
基于广义对数的快速似然比优化及其应用
- 批准号:
22656088 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Bioinformatics in silico by the Unification of Symobols and Patterns
符号和模式统一的计算机生物信息学
- 批准号:
17200016 - 财政年份:2005
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis of Brain Information Components and Its Transmission to Humanoids
大脑信息成分分析及其向人形动物的传输
- 批准号:
15300077 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Accelerated Independent Component Analysis Using Generalized Logarithm
使用广义对数加速独立分量分析
- 批准号:
13680465 - 财政年份:2001
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Multimodal Information Processing Based Upon Fast Expectation-Maximization
基于快速期望最大化的多模态信息处理研究
- 批准号:
11680401 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordination of Self-Organization and External Intelligence
自组织与外部智能的协调
- 批准号:
09680379 - 财政年份:1997
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
The Analog Mind: Connectionism, Consciousness and Mental Representation
模拟思维:联结主义、意识和心理表征
- 批准号:
DP0560199 - 财政年份:2005
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Projects
Research on the Philosophical Significance of Connectionism
联结主义的哲学意义研究
- 批准号:
12410003 - 财政年份:2000
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Natural Language Processing and Connectionism
自然语言处理和联结主义
- 批准号:
9201987 - 财政年份:1992
- 资助金额:
$ 1.41万 - 项目类别:
Continuing Grant