Coordination of Self-Organization and External Intelligence
自组织与外部智能的协调
基本信息
- 批准号:09680379
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In self-organizing systems, a massively large number of information processing elements with modifiable states work together in coordination. Such a total system can reveal complex and sophisticated information processing. This research project utilized this ability in joint data compression and virtual movie generation. The following methods and results were obtained by this study.(1) Multiple descent cost competition is applied to obtain a new learning and self-organization algorithm. This algorithm generates a weight vector feature map and a group vector feature map simultaneously.(2) Digital still image is data-compressed by the multiple descent cost competition. This created a set of deformable color region patterns and a group mesh pattern.(3) The grouping pattern was deformed according to the specification of external intelligence so that virtual digital movie can be generated.(4) Depth information was further added so that virtual 3D movie can be generated.The above new methods and results can be understood to improve computer human interface.
在自组织系统中,大量具有可修改状态的信息处理元件协同工作。这样一个完整的系统可以揭示复杂和复杂的信息处理。本研究计划利用此能力,在联合数据压缩和虚拟电影生成。通过本研究获得了以下方法和结果。(1)采用多下降成本竞争的方法,得到一种新的学习自组织算法。该算法同时生成权向量特征图和组向量特征图。(2)数字静止图像的数据压缩是通过多重下降成本竞争来实现的。这创建了一组可变形颜色区域图案和一组网格图案。(3)根据外部智能的规范对分组模式进行变形,从而生成虚拟数字电影。(4)进一步加入深度信息,生成虚拟三维动画,这些新方法和结果对改善人机界面具有一定的借鉴意义。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yasuo MATSUYAMA: "The α-EM algorithm" Lecture Notes in Computer Science. 1240. 483-492 (1997)
Yasuo MATSUYAMA:“α-EM 算法”计算机科学讲义。1240. 483-492 (1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yasuo MATSUYAMA et al.: "Prior probability weights and neural network learning" Proc.Int.Conf.Neural Info.Processing. 1. 267-270 (1997)
Yasuo MATSUYAMA 等人:“先验概率权重和神经网络学习”Proc.Int.Conf.Neural Info.Processing。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsuyama: "Non-logarithmic information measures, α-EM algorithms and speedup of learning" Proc.IEEE Int.Symp.Information Theory. 1. 385 (1998)
Y.Matsuyama:“非对数信息测量、α-EM 算法和学习加速”Proc.IEEE Int.Symp.信息理论。1. 385 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsuyama,et al.: "A hierarchy from α-EM algorithm to vector quantization and self-organization" Proc.Int.Conf.Neural Info.Processing. 1. 233-238 (1998)
Y. Matsuyama 等人:“从 α-EM 算法到矢量量化和自组织的层次结构”Proc.Int.Conf.Neural Info.Processing。1. 233-238 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yasuo MATSUYAMA: "WEM algorithms and probabilistic learning" Proc.ISCIE Stochastic System Sympo.1. 1-12 (1997)
Yasuo MATSUYAMA:“WEM 算法和概率学习”Proc.ISCIE Stochastic System Sympo.1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUYAMA Yasuo其他文献
MATSUYAMA Yasuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUYAMA Yasuo', 18)}}的其他基金
Fast Likelihood Ratio Optimization Based Upon Genaralized Logarithm and Its Applications
基于广义对数的快速似然比优化及其应用
- 批准号:
22656088 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Bioinformatics in silico by the Unification of Symobols and Patterns
符号和模式统一的计算机生物信息学
- 批准号:
17200016 - 财政年份:2005
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis of Brain Information Components and Its Transmission to Humanoids
大脑信息成分分析及其向人形动物的传输
- 批准号:
15300077 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Accelerated Independent Component Analysis Using Generalized Logarithm
使用广义对数加速独立分量分析
- 批准号:
13680465 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Multimodal Information Processing Based Upon Fast Expectation-Maximization
基于快速期望最大化的多模态信息处理研究
- 批准号:
11680401 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SYMBIOSIS OF HETEROGENEOUS PARALLELISMS
异构并行性的共生
- 批准号:
04650301 - 财政年份:1992
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Machine learning algorithm to predict the postoperative activity in total knee arthroplasty patients
机器学习算法预测全膝关节置换术患者术后活动
- 批准号:
23K10518 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-institutional validation of a multi-modal machine learning algorithm to predict and reduce acute care during cancer therapy
对多模式机器学习算法进行多机构验证,以预测和减少癌症治疗期间的急性护理
- 批准号:
10587221 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
I-Corps: Machine Learning Algorithm for Cardiovascular Disease Diagnosis
I-Corps:用于心血管疾病诊断的机器学习算法
- 批准号:
2331156 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Automated Sonographic Detection of Pulmonary Embolism Using Machine Learning Algorithm
使用机器学习算法自动超声检测肺栓塞
- 批准号:
10741242 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
- 批准号:
10820286 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Development of Reinfrocement Learning Algorithm and Intrinsic Rewards for Meta-models
强化学习算法的开发和元模型的内在奖励
- 批准号:
23K18476 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Innovative Use of Machine-Learning Algorithm Assistance to Rapidly Recognize the Presence of Sudden Cardiac Arrest and Initiate Life-Saving CPR Instructions During Conversations Between 9-1-1 Callers and Telecommunicators.
创新地使用机器学习算法辅助来快速识别心脏骤停的存在,并在 9-1-1 呼叫者和电信员之间的对话期间启动挽救生命的心肺复苏指令。
- 批准号:
487794 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Miscellaneous Programs
Mobile phone-based deep learning algorithm for oral lesion screening in low-resource settings
基于手机的深度学习算法,用于资源匮乏环境下的口腔病变筛查
- 批准号:
10526857 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
- 批准号:
10900991 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别: