Studies on Multimodal Information Processing Based Upon Fast Expectation-Maximization
基于快速期望最大化的多模态信息处理研究
基本信息
- 批准号:11680401
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project had the following two targets:(1) Investigation of new algorithms which give optimal structures measured by probabilistic and statistical performance,(2) Applications of the obtained algorithms to multimodal information sources which correspond to human signals.The first year was used to create a new class of information processing methods. In this phase, the following results were obtained:(a) A new class of expectation-maximization algorithm was found. This method was named the α-EM algorithm. The α-EM algorithm contains the traditional log-EM algorithm as a special case. The performance in speed outperforms the traditional log-EM method. This work received the Telecommunications Advancement Foundation Award.(b) The above method using the extended logarithm was found to be applicable to the independent component analysis which separates unknown source signals. This new method was named the α-ICA.In the last year, the above methods (a) and (b) were applied to multimodal information processing. Obtained results are(i) Motion estimation from optical flows,(ii) Estimation of living human brains' activities from functional magnetic images. It was found that there is an active area in the rear of the right hemisphere. This active area is asymmetric.As is explained above, this research project was ended with lots of viable results.
该项目有以下两个目标:(1)研究新的算法,这些算法可以给出由概率和统计性能衡量的最佳结构;(2)将所获得的算法应用于与人类信号相对应的多模态信息源。第一年用于创建一类新的信息处理方法。(a)提出了一类新的期望最大化算法,称为α-EM算法。α-EM算法包含了传统的log-EM算法作为特例。在速度上优于传统的对数EM方法。这项工作获得了电信进步基金会奖。(b)上述方法使用扩展对数被发现适用于分离未知源信号的独立分量分析。去年,上述方法(a)和(B)被应用于多模态信息处理。得到的结果是(i)运动估计的光流,(ii)估计活的人脑的活动从功能磁图像。结果发现,在右半球后部有一个活动区。如上所述,本研究项目以大量可行的结果结束。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Matsuyama,et al.: "Fast Learning by the α-ECME Algorithm"Proc.ICONIP'99. 3. 1184-1190 (1999)
Y.Matsuyama 等人:“通过 α-ECME 算法进行快速学习”Proc.ICONIP99。3. 1184-1190 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
The α-EM algorithm and its basic properties
α-EM算法及其基本性质
- DOI:
- 发表时间:1999
- 期刊:
- 影响因子:0
- 作者:Y.Matsuyama;et al.;Y.Matsuyama
- 通讯作者:Y.Matsuyama
Multiple descent cost competitive learning and data-compressed 3-D morphing
- DOI:10.1109/iconip.1999.844017
- 发表时间:1999-11
- 期刊:
- 影响因子:0
- 作者:Y. Matsuyama;T. Shimazu;G. Matsuo;T. Arisaka
- 通讯作者:Y. Matsuyama;T. Shimazu;G. Matsuo;T. Arisaka
α-EM algorithm and α-ICA learning based upon extended logarithmic information measures
基于扩展对数信息测度的α-EM算法和α-ICA学习
- DOI:
- 发表时间:2000
- 期刊:
- 影响因子:0
- 作者:Y.Matsuyama;et al.
- 通讯作者:et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUYAMA Yasuo其他文献
MATSUYAMA Yasuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUYAMA Yasuo', 18)}}的其他基金
Fast Likelihood Ratio Optimization Based Upon Genaralized Logarithm and Its Applications
基于广义对数的快速似然比优化及其应用
- 批准号:
22656088 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Bioinformatics in silico by the Unification of Symobols and Patterns
符号和模式统一的计算机生物信息学
- 批准号:
17200016 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis of Brain Information Components and Its Transmission to Humanoids
大脑信息成分分析及其向人形动物的传输
- 批准号:
15300077 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Accelerated Independent Component Analysis Using Generalized Logarithm
使用广义对数加速独立分量分析
- 批准号:
13680465 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordination of Self-Organization and External Intelligence
自组织与外部智能的协调
- 批准号:
09680379 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SYMBIOSIS OF HETEROGENEOUS PARALLELISMS
异构并行性的共生
- 批准号:
04650301 - 财政年份:1992
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Collaborative Research: Implicit Solvent Modeling and Fast Algorithm Development for Simulating Solutes with Atomic Polarizable Multipoles
合作研究:使用原子极化多极子模拟溶质的隐式溶剂建模和快速算法开发
- 批准号:
2110914 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Collaborative Research: Implicit Solvent Modeling and Fast Algorithm Development for Simulating Solutes with Atomic Polarizable Multipoles
合作研究:使用原子极化多极子模拟溶质的隐式溶剂建模和快速算法开发
- 批准号:
2110922 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Fast Algorithm Originated Fault Detection Scheme for Ring-LWE based Cryptographic Hardware
SaTC:CORE:小型:快速算法发起的基于 Ring-LWE 的加密硬件故障检测方案
- 批准号:
2020625 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Automatic event detection for induced earthquakes in Oklahoma based on the FAST algorithm
基于FAST算法的俄克拉荷马州诱发地震自动事件检测
- 批准号:
552015-2020 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
University Undergraduate Student Research Awards
Fast Algorithm for Enumerating Graph Minors in a Graph
枚举图中次要图的快速算法
- 批准号:
19J21000 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Fast Algorithm for Interface Relaxation and Efficient Computational Modeling of Molecular Binding and Unbinding
界面松弛的快速算法以及分子结合和解离的高效计算模型
- 批准号:
1913144 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
A fast algorithm for modular composition
一种模块化组合的快速算法
- 批准号:
524584-2018 - 财政年份:2018
- 资助金额:
$ 2.3万 - 项目类别:
University Undergraduate Student Research Awards
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
- 批准号:
1818910 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
The development of fast algorithm for solving linear programming started a new age
求解线性规划的快速算法的发展开启了新时代
- 批准号:
17K01272 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
- 批准号:
1609195 - 财政年份:2016
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant