Analysis of Brain Information Components and Its Transmission to Humanoids
大脑信息成分分析及其向人形动物的传输
基本信息
- 批准号:15300077
- 负责人:
- 金额:$ 10.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant was applied to the unification of the human movement, the animation, and the humanoid over the computer network. The injection of the brain signal to the humanoid is another objective. The following results were obtained.(1)This research group was able to find the method to unify the human body motion, the cartoon character and the humanoid over the network environment. The designed system includes the recognition of human body motions. The system finds the body motion's abstract expression in a language level. The APNNA Best Paper Award for Application Oriented Research was given in 2004 to the research paper on this method,(2)Because of the abstraction to the language level, the human body motion can be transmitted and used as a command to different humanoids and other robots. In other words, the machine independence between humanoids was obtained.(3)It is not yet possible to obtain granular commands from brain signals because the resolution is still low by the contemporary technology. But, this study found that the abstract commands of (2)can be combined with the overwriting urgent signal from the brain. This method was found useful.(4)For the estimation method of active states of the brain, this study developed the f-ICA which includes the conventional ICA method as a special case. The new method is applicable to a wide class of information sources ; not limited to the brain signal. These targets include digital images and DNA segments, for which successful results were obtained.
这笔拨款用于在计算机网络上统一人类运动,动画和人形。将大脑信号注入人形机器人是另一个目标。得到了以下结果:(1)本课题组能够在网络环境中找到将人体运动、卡通人物和人形统一起来的方法。所设计的系统包括对人体运动的识别。该系统在语言层面上寻找身体动作的抽象表达。该方法的研究论文获得了2004年APNNA面向应用研究的最佳论文奖。(2)由于将人体运动抽象到语言层面,可以将其作为指令传递给不同的类人机器人和其他机器人。换句话说,获得了类人之间的机器独立性。(3)目前尚不可能从大脑信号中获得细粒度的指令,因为当代技术的分辨率仍然很低。但是,本研究发现(2)的抽象指令可以与来自大脑的覆盖紧急信号相结合。人们发现这种方法很有用。(4)对于大脑活动状态的估计方法,本研究开发了包含传统ICA方法作为特例的f-ICA方法。新方法适用于种类广泛的信息源;不仅限于大脑信号。这些目标包括数字图像和DNA片段,并获得了成功的结果。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Matsuyama, R.Kawamura, N.Katsumata: "Independent component analysis with joint speedup and supervisory concept injection Applications to brain fMRI map distillation"Proc.4th Independent Component Analysis and Blind Source Separation. 1. 73-178 (2003)
Y.Matsuyama、R.Kawamura、N.Katsumata:“具有联合加速和监督概念注入的独立成分分析在脑 fMRI 图蒸馏中的应用”Proc.4th 独立成分分析和盲源分离。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsuyama, et al.: "Image compression based upon independent component analysis : Generation of self-aligned ICA bases"Proc.Australian and New Zealand Intelligent Infoamation Systems Conference. 1. 3-8 (2003)
Y.Matsuyama 等人:“基于独立分量分析的图像压缩:自对准 ICA 基础的生成”Proc.澳大利亚和新西兰智能信息系统会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Promoter recognition for E.coli DNA segments by independent component analysis.
通过独立成分分析识别大肠杆菌 DNA 片段的启动子。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yasuo Matsuyama;Ryo Kawamura
- 通讯作者:Ryo Kawamura
Promoter recognition for E. coli DNA segments by independence component analysis
通过独立成分分析识别大肠杆菌 DNA 片段的启动子
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yasuo Matsuyama;Ryo Kawamura
- 通讯作者:Ryo Kawamura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUYAMA Yasuo其他文献
MATSUYAMA Yasuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUYAMA Yasuo', 18)}}的其他基金
Fast Likelihood Ratio Optimization Based Upon Genaralized Logarithm and Its Applications
基于广义对数的快速似然比优化及其应用
- 批准号:
22656088 - 财政年份:2010
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Bioinformatics in silico by the Unification of Symobols and Patterns
符号和模式统一的计算机生物信息学
- 批准号:
17200016 - 财政年份:2005
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Accelerated Independent Component Analysis Using Generalized Logarithm
使用广义对数加速独立分量分析
- 批准号:
13680465 - 财政年份:2001
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Multimodal Information Processing Based Upon Fast Expectation-Maximization
基于快速期望最大化的多模态信息处理研究
- 批准号:
11680401 - 财政年份:1999
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordination of Self-Organization and External Intelligence
自组织与外部智能的协调
- 批准号:
09680379 - 财政年份:1997
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SYMBIOSIS OF HETEROGENEOUS PARALLELISMS
异构并行性的共生
- 批准号:
04650301 - 财政年份:1992
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Sensory substitution for assisting motion recognition and motor learning of persons with disability in swimming
感觉替代协助残疾人游泳时的动作识别和运动学习
- 批准号:
19K19973 - 财政年份:2019
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robot motion recognition and generation reflecting natural language expression of information from human co-worker
机器人动作识别和生成反映了人类同事信息的自然语言表达
- 批准号:
17K00362 - 财政年份:2017
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Embedded Motion Recognition Low Memory and Power Realtime Processing Optimization
嵌入式运动识别低内存低功耗实时处理优化
- 批准号:
493516-2016 - 财政年份:2016
- 资助金额:
$ 10.75万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Gait Analysis for Human Motion Recognition
用于人体运动识别的步态分析
- 批准号:
498668-2016 - 财政年份:2016
- 资助金额:
$ 10.75万 - 项目类别:
University Undergraduate Student Research Awards
CI-P: Planning for SMART-MOVE: A Spatiotemporal Annotated Human Activity Repository for Advanced Motion Recognition and Analysis Research
CI-P:规划 SMART-MOVE:用于高级运动识别和分析研究的时空注释人类活动存储库
- 批准号:
1405985 - 财政年份:2014
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Motion Recognition of Assistance for Bed-Wheelchair transferring and its application to learning support system
辅助床轮椅转移的运动识别及其在学习支持系统中的应用
- 批准号:
25330412 - 财政年份:2013
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of visual training in consideration of the motion recognition and prediction characteristics of the object.
考虑物体的运动识别和预测特性的视觉训练的发展。
- 批准号:
25350781 - 财政年份:2013
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hand Motion Recognition Using Multiple Biosignals Measured from an Forearm
使用从前臂测量的多个生物信号进行手部运动识别
- 批准号:
22800087 - 财政年份:2010
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Motion recognition and estimation based on modelling of the underlying dynamics and selected applications
基于底层动力学建模和选定应用的运动识别和估计
- 批准号:
304106-2004 - 财政年份:2005
- 资助金额:
$ 10.75万 - 项目类别:
Postgraduate Scholarships - Doctoral
Motion recognition and estimation based on modelling of the underlying dynamics and selected applications
基于底层动力学建模和选定应用的运动识别和估计
- 批准号:
304106-2004 - 财政年份:2004
- 资助金额:
$ 10.75万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




