Bioinformatics in silico by the Unification of Symobols and Patterns

符号和模式统一的计算机生物信息学

基本信息

  • 批准号:
    17200016
  • 负责人:
  • 金额:
    $ 29.2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

This project was started towards the development of computational intelligence algorithms for finding soft patterns existing in DNA and amino acid sequences. The main methodology is in Aim. Wet biologists are included in this group so that overly abstract problems are suppressed. The unification between compute-based information scientists and test-tube-based life scientists still requires time, however, a steady step towards such collaboration was enhanced by this project with the following results :(1) Prediction methods fir the transcription start site were established. On human .genome which is a representative of eukaryotes, a combination of the spectrum kernel, hidden Markov models, and FFT integrated by a support vector machine was presented. This mechanism yielded a top class ROC curves. On the prediction of E.coli which is a representative of prokaryotes, a combination of the independent component analysis and a support vector machine revealed the best prediction performance to date.(2) Anew effective algorithm on the multiple sequence alignment was developed. This new method suppresses the appearance of multiple gaps in the same column. The gap extension can be regulated by piecewise linear penalties. The total algorithm is realized as the software named PRIME. The PRIME showed better performances than ClustalW and T-Coffee in the sense of resulting alignments and computational speed.(3) The wet biology team hind an evidence on Rad5l which repairs cut double strands of DNA. The binding site of Rad51 is altered in breast cancer patients.As was explained above, this research brought about fruitful results on post genome topics : The prediction of promoters and transcription start sites, a new multiple sequence alignment method leading to tertiary structure prediction, and a cancer property caused by protein functions.
该项目的开始是为了开发计算智能算法,以发现DNA和氨基酸序列中存在的软模式。主要的方法是在目标。湿生物学家被包括在这个组中,以便抑制过于抽象的问题。基于计算机的信息科学家和基于试管的生命科学家之间的统一仍然需要时间,但是,通过本项目,朝着这种合作迈出了稳步的一步,取得了以下成果:(1)建立了转录起始位点的预测方法。以真核生物的代表人类基因组为研究对象,提出了一种基于支持向量机的谱核、隐马尔可夫模型和快速傅立叶变换相结合的方法。该机制产生了顶级的ROC曲线。在对原核生物的代表大肠杆菌的预测中,将独立成分分析和支持向量机相结合,得到了迄今为止最好的预测效果。(2)提出了一种新的多序列比对算法。此新方法可抑制同一列中出现多个间隙。差距的扩展可以通过分段线性惩罚来调节。整个算法用PRIME软件实现。PRIME在结果对齐和计算速度方面表现出比ClustalW和T-Coffee更好的性能。(3)湿生物学小组在Rad 5l上发现了一个证据,它可以修复被切断的DNA双链。如前所述,本研究在后基因组领域取得了丰硕的成果:启动子和转录起始位点的预测,一种新的多序列比对方法,导致三级结构预测,以及蛋白质功能导致的癌症性质。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improvement of accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gapcost
使用具有分段线性间隙成本的新型组间序列比对算法提高多序列比对的准确性
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Yamada;H.Yamana;et. al.
  • 通讯作者:
    et. al.
Decomposition of Discrete-symbol biosequences to hidden components : Independent component analysis for DNA promoter recognition
将离散符号生物序列分解为隐藏成分:DNA启动子识别的独立成分分析
Altered DNA binding by the human Rad51-R150Q mutant found in breast cancer patients
  • DOI:
    10.1248/bpb.30.1374
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Ishida, Takako;Takizawa, Yoshimasa;Kurumizaka, Hitoshi
  • 通讯作者:
    Kurumizaka, Hitoshi
Roles of the human Rad51 L1 and L2 loops in DNA binding
  • DOI:
    10.1111/j.1742-4658.2006.05323.x
  • 发表时间:
    2006-07-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Matsuo, Yusuke;Sakane, Isao;Kurumizaka, Hitoshi
  • 通讯作者:
    Kurumizaka, Hitoshi
Database retrieval for similar images using ICA and PCA bases
  • DOI:
    10.1016/j.engappai.2005.01.002
  • 发表时间:
    2005-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Katsumata;Y. Matsuyama
  • 通讯作者:
    N. Katsumata;Y. Matsuyama
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATSUYAMA Yasuo其他文献

MATSUYAMA Yasuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATSUYAMA Yasuo', 18)}}的其他基金

Fast Likelihood Ratio Optimization Based Upon Genaralized Logarithm and Its Applications
基于广义对数的快速似然比优化及其应用
  • 批准号:
    22656088
  • 财政年份:
    2010
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Analysis of Brain Information Components and Its Transmission to Humanoids
大脑信息成分分析及其向人形动物的传输
  • 批准号:
    15300077
  • 财政年份:
    2003
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Accelerated Independent Component Analysis Using Generalized Logarithm
使用广义对数加速独立分量分析
  • 批准号:
    13680465
  • 财政年份:
    2001
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Multimodal Information Processing Based Upon Fast Expectation-Maximization
基于快速期望最大化的多模态信息处理研究
  • 批准号:
    11680401
  • 财政年份:
    1999
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coordination of Self-Organization and External Intelligence
自组织与外部智能的协调
  • 批准号:
    09680379
  • 财政年份:
    1997
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SYMBIOSIS OF HETEROGENEOUS PARALLELISMS
异构并行性的共生
  • 批准号:
    04650301
  • 财政年份:
    1992
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Innovative Soft-computing for Condition Assessment of Large Infrastructure
用于大型基础设施状态评估的创新软计算
  • 批准号:
    DE220100909
  • 财政年份:
    2022
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Discovery Early Career Researcher Award
SCALE - Soft Computing to Accelerate fulfilment & Logistics Efficiency - Bezos and Liverpool University
SCALE - 加速实现的软计算
  • 批准号:
    45624
  • 财政年份:
    2020
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Study
SCH: INT: Improving Care for Heart Failure Patients Using Tropical Geometry and Soft Computing
SCH:INT:利用热带几何和软计算改善心力衰竭患者的护理
  • 批准号:
    2014003
  • 财政年份:
    2020
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
A Study on Soft Computing Techniques for Computer Vision
计算机视觉软计算技术研究
  • 批准号:
    17K00351
  • 财政年份:
    2017
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of ultrasound evaluation system for fish meat using soft computing
利用软计算开发鱼肉超声评价系统
  • 批准号:
    16K00348
  • 财政年份:
    2016
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Soft Computing Solution to Energy Conservation in Enterprise Servers
企业服务器节能软计算解决方案
  • 批准号:
    102258
  • 财政年份:
    2015
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Collaborative R&D
Quality Estimation Support Models of Fresh Fish in the Distribution Using Soft Computing
使用软计算的鲜鱼配送质量估计支持模型
  • 批准号:
    25330302
  • 财政年份:
    2013
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Speech recognition and understanding using cloud resources and soft computing in RFID deployment services and online playing games
在RFID部署服务和在线游戏中使用云资源和软计算进行语音识别和理解
  • 批准号:
    283139-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the prediction of acid mine drainage through an integration of physical-based and soft computing models
通过物理和软计算模型的集成改进酸性矿山排水的预测
  • 批准号:
    430274-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Engage Grants Program
Improving Risk Analysis of Climate Change Induced Drought Using Uncertainty-based Soft Computing
使用基于不确定性的软计算改进气候变化引起的干旱的风险分析
  • 批准号:
    410745-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了