Tumor Segmentation and Tumor Probability Analysis with Convolutional Neural Networks: Novel Strategies for Individualized Radiation Therapy of Head&Neck Cancer
卷积神经网络的肿瘤分割和肿瘤概率分析:头部个体化放射治疗的新策略
基本信息
- 批准号:443978314
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The manual segmentation of tumor lesions is a tedious and user-dependent task in radiation therapy planning. Automatic segmentation algorithms have been proposed as an alternative, among which convolutional neural networks (CNN) exhibit the best segmentation performance if a sufficiently large amount of independent input imagedata is available. In radiation therapy planning of head&neck tumors, multi-contrast and multimodality imaging with MRI, PET and CT is often performed with up to 9 different contrasts per exam. These images are used to delineate the tumor margins and to identify hypoxic sub-regions in the tumor which require higher radiation dosesfor an efficient treatment. In this project CNNs will be trained on existing image data of a prospective clinical trial for head&neck tumor treatment. As neither the optimal architecture nor the best setting for the internal parameters is known for CNNs, multiple CNNs will be trained and compared using existing radiation plans as ground truth.In addition, pre-processing methods will be developed to correct for systematic image heterogeneity (originating for example from MRI systems with different field strength) so that more data can be included in the study. For this, the known MRI signal equations will be used to modify the signal intensities for each tissue type individually. It is time-consuming to acquire multimodality and multicontrast images.To identify those input image data that do not improve the segmentation performance, CNNs with different input data will be trained using a leave-one-out strategy, and the CNNs will be compared with a full CNN implementation. As a result of this optimization, the imaging protocol will be optimized and a CNN with optimal performance will be realized. With the resulting CNN configuration automatic tumor and lymph node segmentation will be performed, and correlated with a panel of established biological markers from histology to assess whether CNN-derived imaging features can predict individual tumor biology. The result of this project will be an optimized CNN for automaticsegmentation of head&neck tumors which will also provide additional radiomics information about ways to shorten the diagnostic imaging protocols and about hypoxia-related tumor heterogeneity, which might have direct consequences for new strategies to minimize tumor recurrence.
在放射治疗计划中,肿瘤病灶的手动分割是一项繁琐且依赖于用户的任务。自动分割算法已被提出作为替代方案,其中如果有足够大量的独立输入图像数据可用,卷积神经网络(CNN)将表现出最佳的分割性能。在头颈肿瘤的放射治疗计划中,通常使用 MRI、PET 和 CT 进行多对比和多模态成像,每次检查最多使用 9 个不同的对比。这些图像用于描绘肿瘤边缘并识别肿瘤中需要更高辐射剂量才能进行有效治疗的缺氧子区域。在该项目中,CNN 将接受头颈肿瘤治疗前瞻性临床试验的现有图像数据的训练。由于 CNN 的最佳架构和内部参数的最佳设置均未知,因此将使用现有辐射计划作为基本事实来训练和比较多个 CNN。此外,将开发预处理方法来校正系统图像异质性(例如源自具有不同场强的 MRI 系统),以便在研究中包含更多数据。为此,已知的 MRI 信号方程将用于单独修改每种组织类型的信号强度。获取多模态和多对比度图像非常耗时。为了识别那些不能提高分割性能的输入图像数据,将使用留一策略来训练具有不同输入数据的CNN,并将CNN与完整的CNN实现进行比较。通过这种优化,成像协议将得到优化,并且将实现具有最佳性能的 CNN。利用由此产生的 CNN 配置,将执行自动肿瘤和淋巴结分割,并与一组已建立的组织学生物标记相关联,以评估 CNN 衍生的成像特征是否可以预测个体肿瘤生物学。该项目的结果将是一个用于头颈肿瘤自动分割的优化 CNN,它还将提供有关缩短诊断成像方案的方法和缺氧相关肿瘤异质性的额外放射组学信息,这可能对减少肿瘤复发的新策略产生直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Bock其他文献
Professor Dr. Michael Bock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Bock', 18)}}的其他基金
Biofunctional Assessment and Interventional Treatment of Coronary Inflammation guided by Magnetic Resonance Imaging
磁共振成像引导下冠状动脉炎症的生物功能评估及介入治疗
- 批准号:
415243609 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Improvement of Novel Imaging Technologies to Study Anatomical and Pathological Morphology in Ancient Human Remains: Terahertz Imaging and Spectroscopy and Magnetic Resonance Imaging
改进新型成像技术来研究古代人类遗骸的解剖和病理形态:太赫兹成像和光谱以及磁共振成像
- 批准号:
277686684 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Real-time reconstruction for MR Angiography
磁共振血管造影的实时重建
- 批准号:
142132699 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Temporal dynamics of monocyte migration after myocardial infarction with 19F-MRI
19F-MRI 心肌梗死后单核细胞迁移的时间动态
- 批准号:
492563001 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
SBIR Phase II: High-Resolution Image Segmentation for Natural Resource Management
SBIR 第二阶段:用于自然资源管理的高分辨率图像分割
- 批准号:
2233680 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Automatic Segmentation in Cervical High-Dose Rate Brachytherapy
宫颈高剂量率近距离放射治疗中的自动分割
- 批准号:
495278 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multi-Resolution Curriculum Learning Guided Convolutional Neural Networks for Automatic Segmentation of iPS Cell Colonies
多分辨率课程学习引导卷积神经网络自动分割 iPS 细胞集落
- 批准号:
23K11170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Individual differences in temporal predictions in speech: word segmentation and conversational turn-taking
语音时间预测的个体差异:分词和会话轮流
- 批准号:
2863885 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
FY 2023 SBIR TOPIC 402 PHASE II. ENHANCE THE PERFORMANCE OF THE AI FOR LYMPH NODE DETECTION, SEGMENTATION AND MEASUREMENTS AND DEVELOP ADDITIONAL AI MODELS FOR MALIGNANCY CLASSIFICATION LEVERAGING MU
2023 财年 SBIR 主题 402 第二阶段。
- 批准号:
10928777 - 财政年份:2023
- 资助金额:
-- - 项目类别:
伴侶動物のCT画像における人工知能を用いたsegmentation手法の開発
伴侣动物CT图像人工智能分割方法的开发
- 批准号:
23K14074 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating the Role of ON and OFF Visual Pathways in Object Segmentation for Escape Behavior
阐明 ON 和 OFF 视觉通路在逃逸行为对象分割中的作用
- 批准号:
2212750 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
- 批准号:
2308174 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




